Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366209190> ?p ?o ?g. }
- W4366209190 endingPage "2054" @default.
- W4366209190 startingPage "2037" @default.
- W4366209190 abstract "Abstract. Accurately capturing cloud condensation nuclei (CCN) concentrations is key to understanding the aerosol–cloud interactions that continue to feature the highest uncertainty amongst numerous climate forcings. In situ CCN observations are sparse, and most non-polarimetric passive remote sensing techniques are limited to providing column-effective CCN proxies such as total aerosol optical depth (AOD). Lidar measurements, on the other hand, resolve profiles of aerosol extinction and/or backscatter coefficients that are better suited for constraining vertically resolved aerosol optical and microphysical properties. Here we present relationships between aerosol backscatter and extinction coefficients measured by the airborne High Spectral Resolution Lidar 2 (HSRL-2) and in situ measurements of CCN concentrations. The data were obtained during three deployments in the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) project, which took place over the southeast Atlantic (SEA) during September 2016, August 2017, and September–October 2018. Our analysis of spatiotemporally collocated in situ CCN concentrations and HSRL-2 measurements indicates strong linear relationships between both data sets. The correlation is strongest for supersaturations (S) greater than 0.25 % and dry ambient conditions above the stratocumulus deck, where relative humidity (RH) is less than 50 %. We find CCN–HSRL-2 Pearson correlation coefficients between 0.95–0.97 for different parts of the seasonal burning cycle that suggest fundamental similarities in biomass burning aerosol (BBA) microphysical properties. We find that ORACLES campaign-average values of in situ CCN and in situ extinction coefficients are qualitatively similar to those from other regions and aerosol types, demonstrating overall representativeness of our data set. We compute CCN–backscatter and CCN–extinction regressions that can be used to resolve vertical CCN concentrations across entire above-cloud lidar curtains. These lidar-derived CCN concentrations can be used to evaluate model performance, which we illustrate using an example CCN concentration curtain from the Weather Research and Forecasting Model coupled with physics packages from the Community Atmosphere Model version 5 (WRF-CAM5). These results demonstrate the utility of deriving vertically resolved CCN concentrations from lidar observations to expand the spatiotemporal coverage of limited or unavailable in situ observations." @default.
- W4366209190 created "2023-04-19" @default.
- W4366209190 creator A5000278230 @default.
- W4366209190 creator A5001150915 @default.
- W4366209190 creator A5004854303 @default.
- W4366209190 creator A5006420776 @default.
- W4366209190 creator A5006878973 @default.
- W4366209190 creator A5015916153 @default.
- W4366209190 creator A5019844372 @default.
- W4366209190 creator A5027233915 @default.
- W4366209190 creator A5027893080 @default.
- W4366209190 creator A5029647024 @default.
- W4366209190 creator A5032465514 @default.
- W4366209190 creator A5045632057 @default.
- W4366209190 creator A5049051603 @default.
- W4366209190 creator A5057795592 @default.
- W4366209190 creator A5057981115 @default.
- W4366209190 creator A5063978409 @default.
- W4366209190 creator A5077752824 @default.
- W4366209190 creator A5087669885 @default.
- W4366209190 date "2023-04-17" @default.
- W4366209190 modified "2023-09-27" @default.
- W4366209190 title "Use of lidar aerosol extinction and backscatter coefficients to estimate cloud condensation nuclei (CCN) concentrations in the southeast Atlantic" @default.
- W4366209190 cites W1751483584 @default.
- W4366209190 cites W1925502865 @default.
- W4366209190 cites W1949079599 @default.
- W4366209190 cites W1975196041 @default.
- W4366209190 cites W1986429618 @default.
- W4366209190 cites W2002311377 @default.
- W4366209190 cites W2004730886 @default.
- W4366209190 cites W2007076394 @default.
- W4366209190 cites W2035646221 @default.
- W4366209190 cites W2038468636 @default.
- W4366209190 cites W2043267560 @default.
- W4366209190 cites W2045386802 @default.
- W4366209190 cites W2058853538 @default.
- W4366209190 cites W2064943738 @default.
- W4366209190 cites W2069616895 @default.
- W4366209190 cites W2069704187 @default.
- W4366209190 cites W2076188298 @default.
- W4366209190 cites W2091392780 @default.
- W4366209190 cites W2098095193 @default.
- W4366209190 cites W2099581005 @default.
- W4366209190 cites W2099636727 @default.
- W4366209190 cites W2101148768 @default.
- W4366209190 cites W2105463749 @default.
- W4366209190 cites W2107209395 @default.
- W4366209190 cites W2116900371 @default.
- W4366209190 cites W2118222708 @default.
- W4366209190 cites W2118652470 @default.
- W4366209190 cites W2123405719 @default.
- W4366209190 cites W2142416981 @default.
- W4366209190 cites W2158792833 @default.
- W4366209190 cites W2167088427 @default.
- W4366209190 cites W2167912038 @default.
- W4366209190 cites W2172694317 @default.
- W4366209190 cites W2188165754 @default.
- W4366209190 cites W2263928587 @default.
- W4366209190 cites W2274309914 @default.
- W4366209190 cites W2405493398 @default.
- W4366209190 cites W2410774312 @default.
- W4366209190 cites W2476478762 @default.
- W4366209190 cites W2484487846 @default.
- W4366209190 cites W2804692023 @default.
- W4366209190 cites W2884761458 @default.
- W4366209190 cites W2901832160 @default.
- W4366209190 cites W2902919908 @default.
- W4366209190 cites W2971962598 @default.
- W4366209190 cites W2972746377 @default.
- W4366209190 cites W2980372990 @default.
- W4366209190 cites W2990548937 @default.
- W4366209190 cites W3034446243 @default.
- W4366209190 cites W3095834282 @default.
- W4366209190 cites W3134605366 @default.
- W4366209190 cites W3155640198 @default.
- W4366209190 cites W3173935739 @default.
- W4366209190 cites W3192880971 @default.
- W4366209190 cites W3214337466 @default.
- W4366209190 cites W4205288122 @default.
- W4366209190 cites W4226190193 @default.
- W4366209190 cites W4236270162 @default.
- W4366209190 cites W4280572281 @default.
- W4366209190 cites W4281637059 @default.
- W4366209190 cites W4285094792 @default.
- W4366209190 cites W4293877173 @default.
- W4366209190 doi "https://doi.org/10.5194/amt-16-2037-2023" @default.
- W4366209190 hasPublicationYear "2023" @default.
- W4366209190 type Work @default.
- W4366209190 citedByCount "0" @default.
- W4366209190 crossrefType "journal-article" @default.
- W4366209190 hasAuthorship W4366209190A5000278230 @default.
- W4366209190 hasAuthorship W4366209190A5001150915 @default.
- W4366209190 hasAuthorship W4366209190A5004854303 @default.
- W4366209190 hasAuthorship W4366209190A5006420776 @default.
- W4366209190 hasAuthorship W4366209190A5006878973 @default.
- W4366209190 hasAuthorship W4366209190A5015916153 @default.
- W4366209190 hasAuthorship W4366209190A5019844372 @default.
- W4366209190 hasAuthorship W4366209190A5027233915 @default.