Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366236105> ?p ?o ?g. }
- W4366236105 endingPage "228" @default.
- W4366236105 startingPage "211" @default.
- W4366236105 abstract "Classification of histological patterns in lung adenocarcinoma (LUAD) is critical for clinical decision-making, especially in the early stage. However, the inter- and intraobserver subjectivity of pathologists make the quantification of histological patterns varied and inconsistent. Moreover, the spatial information of histological patterns is not evident to the naked eye of pathologists.We establish the LUAD-subtype deep learning model (LSDLM) with optimal ResNet34 followed by a four-layer Neural Network classifier, based on 40 000 well-annotated path-level tiles. The LSDLM shows robust performance for the identification of histopathological subtypes on the whole-slide level, with an area under the curve (AUC) value of 0.93, 0.96 and 0.85 across one internal and two external validation data sets. The LSDLM is capable of accurately distinguishing different LUAD subtypes through confusion matrices, albeit with a bias for high-risk subtypes. It possesses mixed histology pattern recognition on a par with senior pathologists. Combining the LSDLM-based risk score with the spatial K score (K-RS) shows great capacity for stratifying patients. Furthermore, we found the corresponding gene-level signature (AI-SRSS) to be an independent risk factor correlated with prognosis.Leveraging state-of-the-art deep learning models, the LSDLM shows capacity to assist pathologists in classifying histological patterns and prognosis stratification of LUAD patients." @default.
- W4366236105 created "2023-04-20" @default.
- W4366236105 creator A5029989438 @default.
- W4366236105 creator A5035068879 @default.
- W4366236105 creator A5036763100 @default.
- W4366236105 creator A5036928244 @default.
- W4366236105 creator A5038906848 @default.
- W4366236105 creator A5041234681 @default.
- W4366236105 creator A5042026294 @default.
- W4366236105 creator A5046849313 @default.
- W4366236105 creator A5049143280 @default.
- W4366236105 creator A5050050480 @default.
- W4366236105 creator A5070148419 @default.
- W4366236105 creator A5077604881 @default.
- W4366236105 creator A5078443637 @default.
- W4366236105 creator A5090366405 @default.
- W4366236105 date "2023-04-18" @default.
- W4366236105 modified "2023-10-15" @default.
- W4366236105 title "Deep learning‐based classification and spatial prognosis risk score on whole‐slide images of lung adenocarcinoma" @default.
- W4366236105 cites W1977653087 @default.
- W4366236105 cites W1980610830 @default.
- W4366236105 cites W1992367671 @default.
- W4366236105 cites W1997074080 @default.
- W4366236105 cites W2012046105 @default.
- W4366236105 cites W2031502025 @default.
- W4366236105 cites W2032995263 @default.
- W4366236105 cites W2038014733 @default.
- W4366236105 cites W2091596054 @default.
- W4366236105 cites W2098830176 @default.
- W4366236105 cites W2107296273 @default.
- W4366236105 cites W2115157373 @default.
- W4366236105 cites W2123879591 @default.
- W4366236105 cites W2131155773 @default.
- W4366236105 cites W2132165198 @default.
- W4366236105 cites W2137761597 @default.
- W4366236105 cites W2138778951 @default.
- W4366236105 cites W2149845616 @default.
- W4366236105 cites W2156163116 @default.
- W4366236105 cites W2194775991 @default.
- W4366236105 cites W2251438188 @default.
- W4366236105 cites W2342639474 @default.
- W4366236105 cites W2760946358 @default.
- W4366236105 cites W2792433889 @default.
- W4366236105 cites W2806587241 @default.
- W4366236105 cites W2896319870 @default.
- W4366236105 cites W2911605224 @default.
- W4366236105 cites W2919115771 @default.
- W4366236105 cites W2922268597 @default.
- W4366236105 cites W2952481429 @default.
- W4366236105 cites W2963446712 @default.
- W4366236105 cites W2964345665 @default.
- W4366236105 cites W2981841914 @default.
- W4366236105 cites W2998141119 @default.
- W4366236105 cites W2998794254 @default.
- W4366236105 cites W2999091210 @default.
- W4366236105 cites W3024244570 @default.
- W4366236105 cites W3031256816 @default.
- W4366236105 cites W3035834839 @default.
- W4366236105 cites W3099287508 @default.
- W4366236105 cites W3128646645 @default.
- W4366236105 cites W3132213428 @default.
- W4366236105 cites W3134324269 @default.
- W4366236105 cites W3138516171 @default.
- W4366236105 cites W3141984075 @default.
- W4366236105 cites W3200855726 @default.
- W4366236105 cites W4205501618 @default.
- W4366236105 cites W4212863985 @default.
- W4366236105 cites W4220731900 @default.
- W4366236105 cites W4220889814 @default.
- W4366236105 cites W4283744632 @default.
- W4366236105 cites W4312443924 @default.
- W4366236105 doi "https://doi.org/10.1111/his.14918" @default.
- W4366236105 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37071058" @default.
- W4366236105 hasPublicationYear "2023" @default.
- W4366236105 type Work @default.
- W4366236105 citedByCount "0" @default.
- W4366236105 crossrefType "journal-article" @default.
- W4366236105 hasAuthorship W4366236105A5029989438 @default.
- W4366236105 hasAuthorship W4366236105A5035068879 @default.
- W4366236105 hasAuthorship W4366236105A5036763100 @default.
- W4366236105 hasAuthorship W4366236105A5036928244 @default.
- W4366236105 hasAuthorship W4366236105A5038906848 @default.
- W4366236105 hasAuthorship W4366236105A5041234681 @default.
- W4366236105 hasAuthorship W4366236105A5042026294 @default.
- W4366236105 hasAuthorship W4366236105A5046849313 @default.
- W4366236105 hasAuthorship W4366236105A5049143280 @default.
- W4366236105 hasAuthorship W4366236105A5050050480 @default.
- W4366236105 hasAuthorship W4366236105A5070148419 @default.
- W4366236105 hasAuthorship W4366236105A5077604881 @default.
- W4366236105 hasAuthorship W4366236105A5078443637 @default.
- W4366236105 hasAuthorship W4366236105A5090366405 @default.
- W4366236105 hasConcept C108583219 @default.
- W4366236105 hasConcept C11171543 @default.
- W4366236105 hasConcept C121608353 @default.
- W4366236105 hasConcept C126322002 @default.
- W4366236105 hasConcept C126838900 @default.
- W4366236105 hasConcept C142724271 @default.
- W4366236105 hasConcept C153180895 @default.