Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366236124> ?p ?o ?g. }
- W4366236124 endingPage "694" @default.
- W4366236124 startingPage "682" @default.
- W4366236124 abstract "In a recent article published in this journal, Yuan and Fang (British Journal of Mathematical and Statistical Psychology, 2023) suggest comparing structural equation modeling (SEM), also known as covariance-based SEM (CB-SEM), estimated by normal-distribution-based maximum likelihood (NML), to regression analysis with (weighted) composites estimated by least squares (LS) in terms of their signal-to-noise ratio (SNR). They summarize their findings in the statement that [c]ontrary to the common belief that CB-SEM is the preferred method for the analysis of observational data, this article shows that regression analysis via weighted composites yields parameter estimates with much smaller standard errors, and thus corresponds to greater values of the [SNR]. In our commentary, we show that Yuan and Fang have made several incorrect assumptions and claims. Consequently, we recommend that empirical researchers not base their methodological choice regarding CB-SEM and regression analysis with composites on the findings of Yuan and Fang as these findings are premature and require further research." @default.
- W4366236124 created "2023-04-20" @default.
- W4366236124 creator A5008753312 @default.
- W4366236124 creator A5019358251 @default.
- W4366236124 creator A5030692735 @default.
- W4366236124 creator A5032918472 @default.
- W4366236124 creator A5049982141 @default.
- W4366236124 date "2023-04-18" @default.
- W4366236124 modified "2023-10-14" @default.
- W4366236124 title "Premature conclusions about the signal‐to‐noise ratio in structural equation modeling research: A commentary on Yuan and Fang (2023)" @default.
- W4366236124 cites W1098320805 @default.
- W4366236124 cites W1513618424 @default.
- W4366236124 cites W1538379304 @default.
- W4366236124 cites W156620619 @default.
- W4366236124 cites W1913957972 @default.
- W4366236124 cites W193219038 @default.
- W4366236124 cites W2000301050 @default.
- W4366236124 cites W2019977010 @default.
- W4366236124 cites W2052299306 @default.
- W4366236124 cites W2061288618 @default.
- W4366236124 cites W20683381 @default.
- W4366236124 cites W2074219520 @default.
- W4366236124 cites W2074848931 @default.
- W4366236124 cites W2086603600 @default.
- W4366236124 cites W2088859781 @default.
- W4366236124 cites W2090704724 @default.
- W4366236124 cites W2100739170 @default.
- W4366236124 cites W2150785224 @default.
- W4366236124 cites W2158439228 @default.
- W4366236124 cites W2329081987 @default.
- W4366236124 cites W2414731992 @default.
- W4366236124 cites W2581942536 @default.
- W4366236124 cites W2747870549 @default.
- W4366236124 cites W2917735046 @default.
- W4366236124 cites W2962953288 @default.
- W4366236124 cites W3121501521 @default.
- W4366236124 cites W3134587218 @default.
- W4366236124 cites W3151176709 @default.
- W4366236124 cites W3164878642 @default.
- W4366236124 cites W3185947781 @default.
- W4366236124 cites W3192855505 @default.
- W4366236124 cites W4231079698 @default.
- W4366236124 cites W4234698323 @default.
- W4366236124 cites W4298091299 @default.
- W4366236124 cites W4309499037 @default.
- W4366236124 cites W4311111285 @default.
- W4366236124 cites W4313557845 @default.
- W4366236124 doi "https://doi.org/10.1111/bmsp.12304" @default.
- W4366236124 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37070527" @default.
- W4366236124 hasPublicationYear "2023" @default.
- W4366236124 type Work @default.
- W4366236124 citedByCount "0" @default.
- W4366236124 crossrefType "journal-article" @default.
- W4366236124 hasAuthorship W4366236124A5008753312 @default.
- W4366236124 hasAuthorship W4366236124A5019358251 @default.
- W4366236124 hasAuthorship W4366236124A5030692735 @default.
- W4366236124 hasAuthorship W4366236124A5032918472 @default.
- W4366236124 hasAuthorship W4366236124A5049982141 @default.
- W4366236124 hasBestOaLocation W43662361241 @default.
- W4366236124 hasConcept C105795698 @default.
- W4366236124 hasConcept C115961682 @default.
- W4366236124 hasConcept C138885662 @default.
- W4366236124 hasConcept C149782125 @default.
- W4366236124 hasConcept C152877465 @default.
- W4366236124 hasConcept C154945302 @default.
- W4366236124 hasConcept C178650346 @default.
- W4366236124 hasConcept C18903297 @default.
- W4366236124 hasConcept C22354355 @default.
- W4366236124 hasConcept C2777026412 @default.
- W4366236124 hasConcept C2778774319 @default.
- W4366236124 hasConcept C33923547 @default.
- W4366236124 hasConcept C41008148 @default.
- W4366236124 hasConcept C41895202 @default.
- W4366236124 hasConcept C48921125 @default.
- W4366236124 hasConcept C71104824 @default.
- W4366236124 hasConcept C83546350 @default.
- W4366236124 hasConcept C86803240 @default.
- W4366236124 hasConcept C99498987 @default.
- W4366236124 hasConceptScore W4366236124C105795698 @default.
- W4366236124 hasConceptScore W4366236124C115961682 @default.
- W4366236124 hasConceptScore W4366236124C138885662 @default.
- W4366236124 hasConceptScore W4366236124C149782125 @default.
- W4366236124 hasConceptScore W4366236124C152877465 @default.
- W4366236124 hasConceptScore W4366236124C154945302 @default.
- W4366236124 hasConceptScore W4366236124C178650346 @default.
- W4366236124 hasConceptScore W4366236124C18903297 @default.
- W4366236124 hasConceptScore W4366236124C22354355 @default.
- W4366236124 hasConceptScore W4366236124C2777026412 @default.
- W4366236124 hasConceptScore W4366236124C2778774319 @default.
- W4366236124 hasConceptScore W4366236124C33923547 @default.
- W4366236124 hasConceptScore W4366236124C41008148 @default.
- W4366236124 hasConceptScore W4366236124C41895202 @default.
- W4366236124 hasConceptScore W4366236124C48921125 @default.
- W4366236124 hasConceptScore W4366236124C71104824 @default.
- W4366236124 hasConceptScore W4366236124C83546350 @default.
- W4366236124 hasConceptScore W4366236124C86803240 @default.
- W4366236124 hasConceptScore W4366236124C99498987 @default.
- W4366236124 hasIssue "3" @default.