Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366241303> ?p ?o ?g. }
- W4366241303 endingPage "6725" @default.
- W4366241303 startingPage "6718" @default.
- W4366241303 abstract "Abstract Objectives Computed tomography (CT)–based bronchial parameters correlate with disease status. Segmentation and measurement of the bronchial lumen and walls usually require significant manpower. We evaluate the reproducibility of a deep learning and optimal-surface graph-cut method to automatically segment the airway lumen and wall, and calculate bronchial parameters. Methods A deep-learning airway segmentation model was newly trained on 24 Imaging in Lifelines (ImaLife) low-dose chest CT scans. This model was combined with an optimal-surface graph-cut for airway wall segmentation. These tools were used to calculate bronchial parameters in CT scans of 188 ImaLife participants with two scans an average of 3 months apart. Bronchial parameters were compared for reproducibility assessment, assuming no change between scans. Results Of 376 CT scans, 374 (99%) were successfully measured. Segmented airway trees contained a mean of 10 generations and 250 branches. The coefficient of determination ( R 2 ) for the luminal area (LA) ranged from 0.93 at the trachea to 0.68 at the 6 th generation, decreasing to 0.51 at the 8 th generation. Corresponding values for Wall Area Percentage (WAP) were 0.86, 0.67, and 0.42, respectively. Bland–Altman analysis of LA and WAP per generation demonstrated mean differences close to 0; limits of agreement (LoA) were narrow for WAP and Pi10 (± 3.7% of mean) and wider for LA (± 16.4–22.8% for 2–6 th generations). From the 7 th generation onwards, there was a sharp decrease in reproducibility and a widening LoA. Conclusion The outlined approach for automatic bronchial parameter measurement on low-dose chest CT scans is a reliable way to assess the airway tree down to the 6 th generation. Statement on clinical relevance This reliable and fully automatic pipeline for bronchial parameter measurement on low-dose CT scans has potential applications in screening for early disease and clinical tasks such as virtual bronchoscopy or surgical planning, while also enabling the exploration of bronchial parameters in large datasets. Key Points • Deep learning combined with optimal-surface graph-cut provides accurate airway lumen and wall segmentations on low-dose CT scans . • Analysis of repeat scans showed that the automated tools had moderate-to-good reproducibility of bronchial measurements down to the 6 th generation airway . • Automated measurement of bronchial parameters enables the assessment of large datasets with less man-hours ." @default.
- W4366241303 created "2023-04-20" @default.
- W4366241303 creator A5008869976 @default.
- W4366241303 creator A5012401657 @default.
- W4366241303 creator A5016115586 @default.
- W4366241303 creator A5023677285 @default.
- W4366241303 creator A5035269577 @default.
- W4366241303 creator A5049689568 @default.
- W4366241303 date "2023-04-18" @default.
- W4366241303 modified "2023-10-14" @default.
- W4366241303 title "Reproducibility of a combined artificial intelligence and optimal-surface graph-cut method to automate bronchial parameter extraction" @default.
- W4366241303 cites W1492789543 @default.
- W4366241303 cites W1582842690 @default.
- W4366241303 cites W1988977196 @default.
- W4366241303 cites W2039721686 @default.
- W4366241303 cites W2045898750 @default.
- W4366241303 cites W2046023629 @default.
- W4366241303 cites W2051775772 @default.
- W4366241303 cites W2055261826 @default.
- W4366241303 cites W2072480899 @default.
- W4366241303 cites W2080448710 @default.
- W4366241303 cites W2098374142 @default.
- W4366241303 cites W2150398959 @default.
- W4366241303 cites W2181523240 @default.
- W4366241303 cites W2328570964 @default.
- W4366241303 cites W2519086100 @default.
- W4366241303 cites W2614210011 @default.
- W4366241303 cites W2903759696 @default.
- W4366241303 cites W2908341659 @default.
- W4366241303 cites W2942249639 @default.
- W4366241303 cites W2949676527 @default.
- W4366241303 cites W2985980638 @default.
- W4366241303 cites W3091943745 @default.
- W4366241303 cites W3131051785 @default.
- W4366241303 cites W3132106430 @default.
- W4366241303 cites W3190742591 @default.
- W4366241303 cites W3200046546 @default.
- W4366241303 cites W3216019898 @default.
- W4366241303 cites W4200394011 @default.
- W4366241303 cites W4212945641 @default.
- W4366241303 cites W4213189266 @default.
- W4366241303 cites W4289525342 @default.
- W4366241303 doi "https://doi.org/10.1007/s00330-023-09615-y" @default.
- W4366241303 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37071168" @default.
- W4366241303 hasPublicationYear "2023" @default.
- W4366241303 type Work @default.
- W4366241303 citedByCount "0" @default.
- W4366241303 crossrefType "journal-article" @default.
- W4366241303 hasAuthorship W4366241303A5008869976 @default.
- W4366241303 hasAuthorship W4366241303A5012401657 @default.
- W4366241303 hasAuthorship W4366241303A5016115586 @default.
- W4366241303 hasAuthorship W4366241303A5023677285 @default.
- W4366241303 hasAuthorship W4366241303A5035269577 @default.
- W4366241303 hasAuthorship W4366241303A5049689568 @default.
- W4366241303 hasBestOaLocation W43662413031 @default.
- W4366241303 hasConcept C105795698 @default.
- W4366241303 hasConcept C105922876 @default.
- W4366241303 hasConcept C118552586 @default.
- W4366241303 hasConcept C126838900 @default.
- W4366241303 hasConcept C131631996 @default.
- W4366241303 hasConcept C141071460 @default.
- W4366241303 hasConcept C154945302 @default.
- W4366241303 hasConcept C16568411 @default.
- W4366241303 hasConcept C2779889316 @default.
- W4366241303 hasConcept C2989005 @default.
- W4366241303 hasConcept C33923547 @default.
- W4366241303 hasConcept C41008148 @default.
- W4366241303 hasConcept C71924100 @default.
- W4366241303 hasConcept C89600930 @default.
- W4366241303 hasConcept C9893847 @default.
- W4366241303 hasConceptScore W4366241303C105795698 @default.
- W4366241303 hasConceptScore W4366241303C105922876 @default.
- W4366241303 hasConceptScore W4366241303C118552586 @default.
- W4366241303 hasConceptScore W4366241303C126838900 @default.
- W4366241303 hasConceptScore W4366241303C131631996 @default.
- W4366241303 hasConceptScore W4366241303C141071460 @default.
- W4366241303 hasConceptScore W4366241303C154945302 @default.
- W4366241303 hasConceptScore W4366241303C16568411 @default.
- W4366241303 hasConceptScore W4366241303C2779889316 @default.
- W4366241303 hasConceptScore W4366241303C2989005 @default.
- W4366241303 hasConceptScore W4366241303C33923547 @default.
- W4366241303 hasConceptScore W4366241303C41008148 @default.
- W4366241303 hasConceptScore W4366241303C71924100 @default.
- W4366241303 hasConceptScore W4366241303C89600930 @default.
- W4366241303 hasConceptScore W4366241303C9893847 @default.
- W4366241303 hasIssue "10" @default.
- W4366241303 hasLocation W43662413031 @default.
- W4366241303 hasLocation W43662413032 @default.
- W4366241303 hasLocation W43662413033 @default.
- W4366241303 hasLocation W43662413034 @default.
- W4366241303 hasOpenAccess W4366241303 @default.
- W4366241303 hasPrimaryLocation W43662413031 @default.
- W4366241303 hasRelatedWork W1973270181 @default.
- W4366241303 hasRelatedWork W2003643616 @default.
- W4366241303 hasRelatedWork W2087830269 @default.
- W4366241303 hasRelatedWork W2135069164 @default.
- W4366241303 hasRelatedWork W2368782778 @default.
- W4366241303 hasRelatedWork W2413717610 @default.