Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366245593> ?p ?o ?g. }
- W4366245593 abstract "Since leaks in high-pressure pipelines transporting crude oil can cause severe economic losses, a reliable leak risk assessment can assist in developing an effective pipeline maintenance plan and avoiding unexpected incidents. The fast and accurate leak detection methods are essential for maintaining pipeline safety in pipeline reliability engineering. Current oil pipeline leakage signals are insufficient for feature extraction, while the training time for traditional leakage prediction models is too long. A new leak detection method is proposed based on time-frequency features and the Genetic Algorithm-Levenberg Marquardt (GA-LM) classification model for predicting the leakage status of oil pipelines. The signal that has been processed is transformed to the time and frequency domain, allowing full expression of the original signal. The traditional Back Propagation (BP) neural network is optimized by the Genetic Algorithm (GA) and Levenberg Marquardt (LM) algorithms. The results show that the recognition effect of a combined feature parameter is superior to that of a single feature parameter. The Accuracy, Precision, Recall, and F1score of the GA-LM model is 95%, 93.5%, 96.7%, and 95.1%, respectively, which proves that the GA-LM model has a good predictive effect and excellent stability for positive and negative samples. The proposed GA-LM model can obviously reduce training time and improve recognition efficiency. In addition, considering that a large number of samples are required for model training, a wavelet threshold method is proposed to generate sample data with higher reliability. The research results can provide an effective theoretical and technical reference for the leakage risk assessment of the actual oil pipelines." @default.
- W4366245593 created "2023-04-20" @default.
- W4366245593 creator A5017320345 @default.
- W4366245593 creator A5027800532 @default.
- W4366245593 creator A5031930948 @default.
- W4366245593 creator A5039030237 @default.
- W4366245593 creator A5041339619 @default.
- W4366245593 creator A5045420802 @default.
- W4366245593 creator A5052684104 @default.
- W4366245593 date "2023-04-01" @default.
- W4366245593 modified "2023-09-30" @default.
- W4366245593 title "A reliability-oriented genetic algorithm-levenberg marquardt model for leak risk assessment based on time-frequency features" @default.
- W4366245593 cites W1963824809 @default.
- W4366245593 cites W1996794844 @default.
- W4366245593 cites W2006536100 @default.
- W4366245593 cites W2007230721 @default.
- W4366245593 cites W2044244883 @default.
- W4366245593 cites W2046108727 @default.
- W4366245593 cites W2061998517 @default.
- W4366245593 cites W2076571345 @default.
- W4366245593 cites W2083219613 @default.
- W4366245593 cites W2133764509 @default.
- W4366245593 cites W2177509753 @default.
- W4366245593 cites W2205224345 @default.
- W4366245593 cites W2396695776 @default.
- W4366245593 cites W2418363708 @default.
- W4366245593 cites W2599542682 @default.
- W4366245593 cites W2734469459 @default.
- W4366245593 cites W2767035496 @default.
- W4366245593 cites W2784893835 @default.
- W4366245593 cites W2800712582 @default.
- W4366245593 cites W2900385630 @default.
- W4366245593 cites W2908606342 @default.
- W4366245593 cites W2908623137 @default.
- W4366245593 cites W2912516517 @default.
- W4366245593 cites W2916018064 @default.
- W4366245593 cites W2945094647 @default.
- W4366245593 cites W2962805368 @default.
- W4366245593 cites W2963418397 @default.
- W4366245593 cites W2964121818 @default.
- W4366245593 cites W2973608984 @default.
- W4366245593 cites W2985003285 @default.
- W4366245593 cites W2994531534 @default.
- W4366245593 cites W2995899775 @default.
- W4366245593 cites W2999728705 @default.
- W4366245593 cites W3003596746 @default.
- W4366245593 cites W3012539788 @default.
- W4366245593 cites W3018626342 @default.
- W4366245593 cites W3019944201 @default.
- W4366245593 cites W3027639351 @default.
- W4366245593 cites W3028199655 @default.
- W4366245593 cites W3033850736 @default.
- W4366245593 cites W3042717974 @default.
- W4366245593 cites W3043896870 @default.
- W4366245593 cites W3082150671 @default.
- W4366245593 cites W3102631786 @default.
- W4366245593 cites W3110854813 @default.
- W4366245593 cites W3112626755 @default.
- W4366245593 cites W3112747943 @default.
- W4366245593 cites W3115507218 @default.
- W4366245593 cites W3118924120 @default.
- W4366245593 cites W3159680842 @default.
- W4366245593 cites W3163350197 @default.
- W4366245593 cites W3186006304 @default.
- W4366245593 cites W4281933943 @default.
- W4366245593 cites W819699212 @default.
- W4366245593 doi "https://doi.org/10.1016/j.petsci.2023.04.016" @default.
- W4366245593 hasPublicationYear "2023" @default.
- W4366245593 type Work @default.
- W4366245593 citedByCount "0" @default.
- W4366245593 crossrefType "journal-article" @default.
- W4366245593 hasAuthorship W4366245593A5017320345 @default.
- W4366245593 hasAuthorship W4366245593A5027800532 @default.
- W4366245593 hasAuthorship W4366245593A5031930948 @default.
- W4366245593 hasAuthorship W4366245593A5039030237 @default.
- W4366245593 hasAuthorship W4366245593A5041339619 @default.
- W4366245593 hasAuthorship W4366245593A5045420802 @default.
- W4366245593 hasAuthorship W4366245593A5052684104 @default.
- W4366245593 hasBestOaLocation W43662455931 @default.
- W4366245593 hasConcept C119857082 @default.
- W4366245593 hasConcept C121332964 @default.
- W4366245593 hasConcept C124101348 @default.
- W4366245593 hasConcept C127413603 @default.
- W4366245593 hasConcept C138885662 @default.
- W4366245593 hasConcept C153180895 @default.
- W4366245593 hasConcept C154945302 @default.
- W4366245593 hasConcept C163258240 @default.
- W4366245593 hasConcept C175309249 @default.
- W4366245593 hasConcept C199360897 @default.
- W4366245593 hasConcept C2776401178 @default.
- W4366245593 hasConcept C2780378346 @default.
- W4366245593 hasConcept C41008148 @default.
- W4366245593 hasConcept C41895202 @default.
- W4366245593 hasConcept C43214815 @default.
- W4366245593 hasConcept C43521106 @default.
- W4366245593 hasConcept C50644808 @default.
- W4366245593 hasConcept C62520636 @default.
- W4366245593 hasConcept C87578567 @default.
- W4366245593 hasConcept C87717796 @default.
- W4366245593 hasConcept C8880873 @default.