Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366245861> ?p ?o ?g. }
- W4366245861 endingPage "118978" @default.
- W4366245861 startingPage "118978" @default.
- W4366245861 abstract "The electrocardiogram (ECG) signal is made up of sequences of three distinct waves, including the P-wave, QRS-complex, and T-wave. These sequences may contain several different varieties of feature representation, which means various appearances represent different attribute knowledge of heart activity. Consequently, delicate analysis of the ECG attribute knowledge is critical, which focuses on empowering computers to understand ECG signals in a way physicians do. Traditional ECG systems usually only focus on the key wave detection or sub-sequences morphological classification, and the complex ECG features make the analysis process difficult to handle both tasks. In this paper, our goal is to propose a novel ECG analysis technique for ECG medical attribute knowledge feature extraction, termed ECG-MAKE method. The ECG-MAKE method mainly addresses two challenging issues—ECG signal key points detection and morphological delineation—by introducing four modules: signal preprocessing, key point detection, adaptive error correction, and attribute knowledge extraction. Signal preprocessing is based on a wavelet multi-resolution algorithm, which extracts both time and frequency domain information simultaneously, and achieves the goal of enhancing raw signals by filtering signals below 1 Hz and above 100 Hz. The key point detection combines mean-value difference and sliding window to detect R-peak. And according to the R-peak, further utilizes the ECG rules and threshold to detect the onset, peak, and offset of different heartbeat waveforms such as the P-waves and T-waves. Then, for standard 12-lead ECG, the adaptive error correction can automatically correct the spatial position of certain leads missed and false detection key points. Finally, the attribute knowledge extraction module is based on the statistical features of key points to obtain the ECG attributes knowledge of clinical diagnosis of ECG. Extensive experiments conducted on the publicly available database QT database (99.57% F1-score) have demonstrated the effectiveness of the proposed ECG-MAKE method. The proposed method has a higher classification performance than current state-of-the-art methods with an F1-score performance of 94.30% on the ZZU-ECG database." @default.
- W4366245861 created "2023-04-20" @default.
- W4366245861 creator A5001517696 @default.
- W4366245861 creator A5016715119 @default.
- W4366245861 creator A5017277815 @default.
- W4366245861 creator A5028397253 @default.
- W4366245861 creator A5039105930 @default.
- W4366245861 creator A5043839950 @default.
- W4366245861 creator A5071576003 @default.
- W4366245861 creator A5073207559 @default.
- W4366245861 creator A5089130898 @default.
- W4366245861 date "2023-08-01" @default.
- W4366245861 modified "2023-10-01" @default.
- W4366245861 title "ECG-MAKE: An ECG signal delineation approach based on medical attribute knowledge extraction" @default.
- W4366245861 cites W1605480097 @default.
- W4366245861 cites W1694175521 @default.
- W4366245861 cites W1984944288 @default.
- W4366245861 cites W2080883481 @default.
- W4366245861 cites W2116712708 @default.
- W4366245861 cites W2127510558 @default.
- W4366245861 cites W2162273778 @default.
- W4366245861 cites W2170839606 @default.
- W4366245861 cites W2512426799 @default.
- W4366245861 cites W2589049692 @default.
- W4366245861 cites W2733417036 @default.
- W4366245861 cites W2753762384 @default.
- W4366245861 cites W2827978565 @default.
- W4366245861 cites W2888491225 @default.
- W4366245861 cites W2890652590 @default.
- W4366245861 cites W2902644322 @default.
- W4366245861 cites W2953193031 @default.
- W4366245861 cites W3005762221 @default.
- W4366245861 cites W3022945091 @default.
- W4366245861 cites W3032108578 @default.
- W4366245861 cites W3103316658 @default.
- W4366245861 cites W3107996784 @default.
- W4366245861 cites W3124087644 @default.
- W4366245861 cites W3135903359 @default.
- W4366245861 cites W3139520347 @default.
- W4366245861 cites W3154677930 @default.
- W4366245861 cites W3170087560 @default.
- W4366245861 cites W3170201991 @default.
- W4366245861 cites W3180942533 @default.
- W4366245861 cites W3181156070 @default.
- W4366245861 cites W3192787614 @default.
- W4366245861 cites W3197734067 @default.
- W4366245861 cites W3197775087 @default.
- W4366245861 cites W3198728103 @default.
- W4366245861 cites W3199766309 @default.
- W4366245861 cites W3201284022 @default.
- W4366245861 cites W4200153811 @default.
- W4366245861 cites W4213031993 @default.
- W4366245861 cites W4220781648 @default.
- W4366245861 cites W4282939171 @default.
- W4366245861 cites W4304979593 @default.
- W4366245861 cites W4321793448 @default.
- W4366245861 doi "https://doi.org/10.1016/j.ins.2023.118978" @default.
- W4366245861 hasPublicationYear "2023" @default.
- W4366245861 type Work @default.
- W4366245861 citedByCount "1" @default.
- W4366245861 countsByYear W43662458612023 @default.
- W4366245861 crossrefType "journal-article" @default.
- W4366245861 hasAuthorship W4366245861A5001517696 @default.
- W4366245861 hasAuthorship W4366245861A5016715119 @default.
- W4366245861 hasAuthorship W4366245861A5017277815 @default.
- W4366245861 hasAuthorship W4366245861A5028397253 @default.
- W4366245861 hasAuthorship W4366245861A5039105930 @default.
- W4366245861 hasAuthorship W4366245861A5043839950 @default.
- W4366245861 hasAuthorship W4366245861A5071576003 @default.
- W4366245861 hasAuthorship W4366245861A5073207559 @default.
- W4366245861 hasAuthorship W4366245861A5089130898 @default.
- W4366245861 hasConcept C111773187 @default.
- W4366245861 hasConcept C124101348 @default.
- W4366245861 hasConcept C13852961 @default.
- W4366245861 hasConcept C153180895 @default.
- W4366245861 hasConcept C154945302 @default.
- W4366245861 hasConcept C164705383 @default.
- W4366245861 hasConcept C19118579 @default.
- W4366245861 hasConcept C197424946 @default.
- W4366245861 hasConcept C199360897 @default.
- W4366245861 hasConcept C207685749 @default.
- W4366245861 hasConcept C2779843651 @default.
- W4366245861 hasConcept C31972630 @default.
- W4366245861 hasConcept C34736171 @default.
- W4366245861 hasConcept C38652104 @default.
- W4366245861 hasConcept C41008148 @default.
- W4366245861 hasConcept C47432892 @default.
- W4366245861 hasConcept C52622490 @default.
- W4366245861 hasConcept C554190296 @default.
- W4366245861 hasConcept C71924100 @default.
- W4366245861 hasConcept C76155785 @default.
- W4366245861 hasConceptScore W4366245861C111773187 @default.
- W4366245861 hasConceptScore W4366245861C124101348 @default.
- W4366245861 hasConceptScore W4366245861C13852961 @default.
- W4366245861 hasConceptScore W4366245861C153180895 @default.
- W4366245861 hasConceptScore W4366245861C154945302 @default.
- W4366245861 hasConceptScore W4366245861C164705383 @default.
- W4366245861 hasConceptScore W4366245861C19118579 @default.