Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366245959> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4366245959 endingPage "110298" @default.
- W4366245959 startingPage "110298" @default.
- W4366245959 abstract "Privileged information learning is proposed to construct the classifier by incorporating privileged knowledge. At present, most of the privileged information learning methods assume that the instance is accurately labeled. However, in real-world applications, an instance may be weakly labeled. In this paper, we propose a novel privileged information learning method with weak labels (PLWB). The hypothesis of our work is that an instance may be annotated by a number of labelers and different labelers may give different labels to this instance due to distinct professional knowledge and subjective factors. It leads to ambiguous labels of instances, namely weak labels. To solve this problem, our methodology is to give each labeler a weight and incorporate these weights into a privileged information learning model. Our technique is to employ a heuristic framework to optimize the labeler weights and the privileged information learning model jointly. The existing privileged information learning methods do not consider the weak label problem, and assign an equal or random weight to each labeler. Our work is different from these methods. The novelty and theoretical contribution is that this is the first work to deal with the weak label problem in privileged information learning. The merit is that we assign an unknown weight to each labeler and solve the optimal values of these weights in the optimization process, such that the performance of the learning model can be improved with the optimal labeler weights. In the experiments, the tool that we use is MATLAB, in which we implement our algorithm. The experimental datasets include one handwritten categorization dataset, two image classification datasets (i.e., Animals-with-Attributes dataset and Caltech-101 dataset), and one disease diagnosis dataset (i.e., Alzheimer’s Disease Neuroimaging Initiative dataset), in which the number of instances used is 2000, 6180, 8677 and 202, respectively. The obtained results are that: (1) by optimizing the labeler weights, the proposed PLWB method obtains explicitly higher classification accuracy than the existing privileged information learning methods; (2) PLWB has relatively higher training time since it needs to solve the labeler weights in the optimization process." @default.
- W4366245959 created "2023-04-20" @default.
- W4366245959 creator A5009407457 @default.
- W4366245959 creator A5009705946 @default.
- W4366245959 creator A5054576459 @default.
- W4366245959 creator A5058883368 @default.
- W4366245959 creator A5059154814 @default.
- W4366245959 creator A5076787733 @default.
- W4366245959 creator A5090815103 @default.
- W4366245959 date "2023-07-01" @default.
- W4366245959 modified "2023-10-18" @default.
- W4366245959 title "Privileged information learning with weak labels" @default.
- W4366245959 cites W2067562626 @default.
- W4366245959 cites W2112796928 @default.
- W4366245959 cites W2169408065 @default.
- W4366245959 cites W2604795365 @default.
- W4366245959 cites W2921261674 @default.
- W4366245959 cites W2963594874 @default.
- W4366245959 cites W3041081714 @default.
- W4366245959 cites W3103876096 @default.
- W4366245959 cites W3131625543 @default.
- W4366245959 cites W3159559011 @default.
- W4366245959 cites W3171582157 @default.
- W4366245959 cites W3209228202 @default.
- W4366245959 cites W4226239203 @default.
- W4366245959 cites W4286639478 @default.
- W4366245959 cites W4290860476 @default.
- W4366245959 cites W4290958416 @default.
- W4366245959 cites W4294707533 @default.
- W4366245959 cites W4309278905 @default.
- W4366245959 doi "https://doi.org/10.1016/j.asoc.2023.110298" @default.
- W4366245959 hasPublicationYear "2023" @default.
- W4366245959 type Work @default.
- W4366245959 citedByCount "2" @default.
- W4366245959 countsByYear W43662459592023 @default.
- W4366245959 crossrefType "journal-article" @default.
- W4366245959 hasAuthorship W4366245959A5009407457 @default.
- W4366245959 hasAuthorship W4366245959A5009705946 @default.
- W4366245959 hasAuthorship W4366245959A5054576459 @default.
- W4366245959 hasAuthorship W4366245959A5058883368 @default.
- W4366245959 hasAuthorship W4366245959A5059154814 @default.
- W4366245959 hasAuthorship W4366245959A5076787733 @default.
- W4366245959 hasAuthorship W4366245959A5090815103 @default.
- W4366245959 hasConcept C111919701 @default.
- W4366245959 hasConcept C119857082 @default.
- W4366245959 hasConcept C138885662 @default.
- W4366245959 hasConcept C154945302 @default.
- W4366245959 hasConcept C173801870 @default.
- W4366245959 hasConcept C199360897 @default.
- W4366245959 hasConcept C27206212 @default.
- W4366245959 hasConcept C2778738651 @default.
- W4366245959 hasConcept C2780801425 @default.
- W4366245959 hasConcept C41008148 @default.
- W4366245959 hasConcept C95623464 @default.
- W4366245959 hasConcept C98045186 @default.
- W4366245959 hasConceptScore W4366245959C111919701 @default.
- W4366245959 hasConceptScore W4366245959C119857082 @default.
- W4366245959 hasConceptScore W4366245959C138885662 @default.
- W4366245959 hasConceptScore W4366245959C154945302 @default.
- W4366245959 hasConceptScore W4366245959C173801870 @default.
- W4366245959 hasConceptScore W4366245959C199360897 @default.
- W4366245959 hasConceptScore W4366245959C27206212 @default.
- W4366245959 hasConceptScore W4366245959C2778738651 @default.
- W4366245959 hasConceptScore W4366245959C2780801425 @default.
- W4366245959 hasConceptScore W4366245959C41008148 @default.
- W4366245959 hasConceptScore W4366245959C95623464 @default.
- W4366245959 hasConceptScore W4366245959C98045186 @default.
- W4366245959 hasFunder F4320321001 @default.
- W4366245959 hasFunder F4320321921 @default.
- W4366245959 hasLocation W43662459591 @default.
- W4366245959 hasOpenAccess W4366245959 @default.
- W4366245959 hasPrimaryLocation W43662459591 @default.
- W4366245959 hasRelatedWork W1499475019 @default.
- W4366245959 hasRelatedWork W2157983719 @default.
- W4366245959 hasRelatedWork W2556319748 @default.
- W4366245959 hasRelatedWork W2961085424 @default.
- W4366245959 hasRelatedWork W3200179079 @default.
- W4366245959 hasRelatedWork W4243884691 @default.
- W4366245959 hasRelatedWork W4286629047 @default.
- W4366245959 hasRelatedWork W4306321456 @default.
- W4366245959 hasRelatedWork W4306674287 @default.
- W4366245959 hasRelatedWork W4224009465 @default.
- W4366245959 hasVolume "142" @default.
- W4366245959 isParatext "false" @default.
- W4366245959 isRetracted "false" @default.
- W4366245959 workType "article" @default.