Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366259149> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4366259149 abstract "In this paper, the potential for time series classifiers to identify faults and their location in a DC Microgrid is explored. Two different classification algorithms are considered. First, a minimally random convolutional kernel transformation (MINIROCKET) is applied on the time series fault data. The transformed data is used to train a regularized linear classifier with stochastic gradient descent (SDG). Second, a continuous wavelet transform (CWT) is applied on the fault data and a convolutional neural network (CNN) is trained to learn the characteristic patterns in the CWT coefficients of the transformed data. The data used for training and testing the models are acquired from multiple fault simulations on a 750 V <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>DC</inf> Microgrid modeled in PSCAD/EMTDC. The results from both classification algorithms are presented and compared. For an accurate classification of the fault location, the MINIROCKET and SGD Classifier model needed signals/features from several measurement nodes in the system. The CWT and CNN based model accurately identified the fault location with signals from a single measurement node in the system. By performing a self-learning monitoring and decision making analysis, protection relays equipped with time series classification algorithms can quickly detect the location of faults and isolate them to improve the protection operations on DC Microgrids." @default.
- W4366259149 created "2023-04-20" @default.
- W4366259149 creator A5078468170 @default.
- W4366259149 creator A5087748799 @default.
- W4366259149 date "2023-04-10" @default.
- W4366259149 modified "2023-09-27" @default.
- W4366259149 title "Time Series Classification for Detecting Fault Location in a DC Microgrid" @default.
- W4366259149 cites W2036302375 @default.
- W4366259149 cites W2107470485 @default.
- W4366259149 cites W2115556004 @default.
- W4366259149 cites W2162661160 @default.
- W4366259149 cites W2497855708 @default.
- W4366259149 cites W2507428423 @default.
- W4366259149 cites W2527144401 @default.
- W4366259149 cites W2557908743 @default.
- W4366259149 cites W2766103644 @default.
- W4366259149 cites W2889262340 @default.
- W4366259149 cites W3016537629 @default.
- W4366259149 cites W3042807565 @default.
- W4366259149 cites W3114240398 @default.
- W4366259149 cites W3154693457 @default.
- W4366259149 cites W3187260879 @default.
- W4366259149 cites W3200285077 @default.
- W4366259149 cites W4285028875 @default.
- W4366259149 cites W4285103585 @default.
- W4366259149 doi "https://doi.org/10.1109/gridedge54130.2023.10102748" @default.
- W4366259149 hasPublicationYear "2023" @default.
- W4366259149 type Work @default.
- W4366259149 citedByCount "0" @default.
- W4366259149 crossrefType "proceedings-article" @default.
- W4366259149 hasAuthorship W4366259149A5078468170 @default.
- W4366259149 hasAuthorship W4366259149A5087748799 @default.
- W4366259149 hasConcept C114614502 @default.
- W4366259149 hasConcept C119857082 @default.
- W4366259149 hasConcept C124101348 @default.
- W4366259149 hasConcept C127313418 @default.
- W4366259149 hasConcept C151406439 @default.
- W4366259149 hasConcept C153180895 @default.
- W4366259149 hasConcept C154945302 @default.
- W4366259149 hasConcept C165205528 @default.
- W4366259149 hasConcept C175551986 @default.
- W4366259149 hasConcept C196216189 @default.
- W4366259149 hasConcept C2775924081 @default.
- W4366259149 hasConcept C2776784348 @default.
- W4366259149 hasConcept C33923547 @default.
- W4366259149 hasConcept C41008148 @default.
- W4366259149 hasConcept C47432892 @default.
- W4366259149 hasConcept C74193536 @default.
- W4366259149 hasConcept C81363708 @default.
- W4366259149 hasConcept C95623464 @default.
- W4366259149 hasConceptScore W4366259149C114614502 @default.
- W4366259149 hasConceptScore W4366259149C119857082 @default.
- W4366259149 hasConceptScore W4366259149C124101348 @default.
- W4366259149 hasConceptScore W4366259149C127313418 @default.
- W4366259149 hasConceptScore W4366259149C151406439 @default.
- W4366259149 hasConceptScore W4366259149C153180895 @default.
- W4366259149 hasConceptScore W4366259149C154945302 @default.
- W4366259149 hasConceptScore W4366259149C165205528 @default.
- W4366259149 hasConceptScore W4366259149C175551986 @default.
- W4366259149 hasConceptScore W4366259149C196216189 @default.
- W4366259149 hasConceptScore W4366259149C2775924081 @default.
- W4366259149 hasConceptScore W4366259149C2776784348 @default.
- W4366259149 hasConceptScore W4366259149C33923547 @default.
- W4366259149 hasConceptScore W4366259149C41008148 @default.
- W4366259149 hasConceptScore W4366259149C47432892 @default.
- W4366259149 hasConceptScore W4366259149C74193536 @default.
- W4366259149 hasConceptScore W4366259149C81363708 @default.
- W4366259149 hasConceptScore W4366259149C95623464 @default.
- W4366259149 hasFunder F4320333916 @default.
- W4366259149 hasLocation W43662591491 @default.
- W4366259149 hasOpenAccess W4366259149 @default.
- W4366259149 hasPrimaryLocation W43662591491 @default.
- W4366259149 hasRelatedWork W2148116311 @default.
- W4366259149 hasRelatedWork W2613736958 @default.
- W4366259149 hasRelatedWork W2804005492 @default.
- W4366259149 hasRelatedWork W2961085424 @default.
- W4366259149 hasRelatedWork W2995914718 @default.
- W4366259149 hasRelatedWork W3027997911 @default.
- W4366259149 hasRelatedWork W3093612317 @default.
- W4366259149 hasRelatedWork W4225852842 @default.
- W4366259149 hasRelatedWork W4287776258 @default.
- W4366259149 hasRelatedWork W564581980 @default.
- W4366259149 isParatext "false" @default.
- W4366259149 isRetracted "false" @default.
- W4366259149 workType "article" @default.