Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366266945> ?p ?o ?g. }
- W4366266945 endingPage "10779" @default.
- W4366266945 startingPage "10765" @default.
- W4366266945 abstract "Spectrum sensing will be an essential component in developing cognitive radio networks, which will be an essential component of the subsequent generation of wireless communication systems. Over the course of several decades, a great deal of different strategies, including cyclo-stationary, energy detectors, and matching filters, have been put up as potential solutions. Obviously, each of these methods comes with a few of negatives that you have to take into consideration. When the Signal-to-Noise Ratio (SNR) changes, energy detectors work poorly; cyclo-stationary detectors are technically sophisticated; and employing matching filters needs experience with Primary User (PU) signals. Researchers have recently been devoting a great deal of attention to Machine Learning (ML) and Deep Learning (DL) algorithms as a result of the potential uses that these algorithms may have in the development of exceptionally accurate spectrum sensing models. The capacity to learn from data in a way that traditional learning algorithms are unable to has led to the rise in prominence of these types of algorithms. The Hybrid Model of Improved Long Short Term Memory with Improved Extreme Learning Models (HILSTM-IELM), to be more specific, is what is being suggested since it reduces the amount of energy that is used during data transmission as well as the range and the duty cycle. Because of this, the disadvantage in existing methodology, proposed technique reduced to a certain level in energy consumption. In the last step of this analysis, the performance of the HILSTM-IELM-based spectrum sensing is compared to that of a variety of different methods that are currently in use. According to the findings of recent studies, the spectrum sensing method that was created provides superior performance to that of technologies in terms of the accuracy, sensitivity, and specificity of data transmission systems." @default.
- W4366266945 created "2023-04-20" @default.
- W4366266945 creator A5002281125 @default.
- W4366266945 creator A5072808797 @default.
- W4366266945 date "2023-06-01" @default.
- W4366266945 modified "2023-09-30" @default.
- W4366266945 title "Reliable hybrid deep learning technique for an effective spectrum sensing in cognitive radio" @default.
- W4366266945 cites W1969677351 @default.
- W4366266945 cites W2034377106 @default.
- W4366266945 cites W2071707134 @default.
- W4366266945 cites W2122274174 @default.
- W4366266945 cites W2165800172 @default.
- W4366266945 cites W2168078104 @default.
- W4366266945 cites W2783558323 @default.
- W4366266945 cites W2971778960 @default.
- W4366266945 cites W2972344074 @default.
- W4366266945 cites W2973209754 @default.
- W4366266945 cites W3010867338 @default.
- W4366266945 cites W3011894868 @default.
- W4366266945 cites W3013726402 @default.
- W4366266945 cites W3027109963 @default.
- W4366266945 cites W3035433808 @default.
- W4366266945 cites W3062838969 @default.
- W4366266945 cites W3089664461 @default.
- W4366266945 cites W3091305564 @default.
- W4366266945 cites W3124838391 @default.
- W4366266945 cites W3183862984 @default.
- W4366266945 cites W3198599344 @default.
- W4366266945 cites W3211153404 @default.
- W4366266945 cites W4293192739 @default.
- W4366266945 doi "https://doi.org/10.3233/jifs-224376" @default.
- W4366266945 hasPublicationYear "2023" @default.
- W4366266945 type Work @default.
- W4366266945 citedByCount "0" @default.
- W4366266945 crossrefType "journal-article" @default.
- W4366266945 hasAuthorship W4366266945A5002281125 @default.
- W4366266945 hasAuthorship W4366266945A5072808797 @default.
- W4366266945 hasConcept C105795698 @default.
- W4366266945 hasConcept C108583219 @default.
- W4366266945 hasConcept C115961682 @default.
- W4366266945 hasConcept C119599485 @default.
- W4366266945 hasConcept C119857082 @default.
- W4366266945 hasConcept C121332964 @default.
- W4366266945 hasConcept C127413603 @default.
- W4366266945 hasConcept C136197465 @default.
- W4366266945 hasConcept C149946192 @default.
- W4366266945 hasConcept C154945302 @default.
- W4366266945 hasConcept C165801399 @default.
- W4366266945 hasConcept C168167062 @default.
- W4366266945 hasConcept C186370098 @default.
- W4366266945 hasConcept C199822604 @default.
- W4366266945 hasConcept C26517878 @default.
- W4366266945 hasConcept C2780165032 @default.
- W4366266945 hasConcept C33923547 @default.
- W4366266945 hasConcept C38652104 @default.
- W4366266945 hasConcept C41008148 @default.
- W4366266945 hasConcept C555944384 @default.
- W4366266945 hasConcept C761482 @default.
- W4366266945 hasConcept C76155785 @default.
- W4366266945 hasConcept C94915269 @default.
- W4366266945 hasConcept C97355855 @default.
- W4366266945 hasConcept C99498987 @default.
- W4366266945 hasConceptScore W4366266945C105795698 @default.
- W4366266945 hasConceptScore W4366266945C108583219 @default.
- W4366266945 hasConceptScore W4366266945C115961682 @default.
- W4366266945 hasConceptScore W4366266945C119599485 @default.
- W4366266945 hasConceptScore W4366266945C119857082 @default.
- W4366266945 hasConceptScore W4366266945C121332964 @default.
- W4366266945 hasConceptScore W4366266945C127413603 @default.
- W4366266945 hasConceptScore W4366266945C136197465 @default.
- W4366266945 hasConceptScore W4366266945C149946192 @default.
- W4366266945 hasConceptScore W4366266945C154945302 @default.
- W4366266945 hasConceptScore W4366266945C165801399 @default.
- W4366266945 hasConceptScore W4366266945C168167062 @default.
- W4366266945 hasConceptScore W4366266945C186370098 @default.
- W4366266945 hasConceptScore W4366266945C199822604 @default.
- W4366266945 hasConceptScore W4366266945C26517878 @default.
- W4366266945 hasConceptScore W4366266945C2780165032 @default.
- W4366266945 hasConceptScore W4366266945C33923547 @default.
- W4366266945 hasConceptScore W4366266945C38652104 @default.
- W4366266945 hasConceptScore W4366266945C41008148 @default.
- W4366266945 hasConceptScore W4366266945C555944384 @default.
- W4366266945 hasConceptScore W4366266945C761482 @default.
- W4366266945 hasConceptScore W4366266945C76155785 @default.
- W4366266945 hasConceptScore W4366266945C94915269 @default.
- W4366266945 hasConceptScore W4366266945C97355855 @default.
- W4366266945 hasConceptScore W4366266945C99498987 @default.
- W4366266945 hasIssue "6" @default.
- W4366266945 hasLocation W43662669451 @default.
- W4366266945 hasOpenAccess W4366266945 @default.
- W4366266945 hasPrimaryLocation W43662669451 @default.
- W4366266945 hasRelatedWork W2021052909 @default.
- W4366266945 hasRelatedWork W2034619563 @default.
- W4366266945 hasRelatedWork W2099500669 @default.
- W4366266945 hasRelatedWork W2101008770 @default.
- W4366266945 hasRelatedWork W2131800359 @default.
- W4366266945 hasRelatedWork W2149454299 @default.
- W4366266945 hasRelatedWork W4223943233 @default.