Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366267771> ?p ?o ?g. }
- W4366267771 endingPage "1593" @default.
- W4366267771 startingPage "1578" @default.
- W4366267771 abstract "•RNA delivery systems based on M12L24 nanocage-RNA composites are introduced •Tunable RNA binding strength and delivery efficiency •Cell-specific GFP silencing in vitro is achieved by changing the cage-forming metal •Specific GFP silencing by RRNA⊂Pd12L24 for HeLa cells and by RNA⊂Pt12L24 for U2OS cells Small interfering RNA (siRNA) therapeutics have shown tremendous potential for the treatment of a range of diseases, but there is still a need for novel siRNA delivery materials. Here, we introduce M12L24 cages as siRNA delivery agents. We used four functionalized building blocks to form M12L24 nanocages. Dynamic light scattering showed that well-defined 130 nm nanocage/siRNA assemblies formed with positive zeta potentials. Cell-specific siRNA-mediated green fluorescent protein (GFP) silencing, controlled by the metal used for nanocage formation, was obtained. A Pt12L24 nanocage was highly effective in delivering siRNA to U2OS cells but showed little efficiency for HeLa cells. The less stable Pd12L24 nanocage derived from the same building block displayed effective GFP silencing for HeLa cells but not for U2OS cells. The ease of preparation and the ability to tune the binding strength, together with the specific siRNA delivery efficiency depending on the building blocks and metals, show potential for future siRNA delivery applications. Small interfering RNA (siRNA) therapeutics have shown tremendous potential for the treatment of a range of diseases, but there is still a need for novel siRNA delivery materials. Here, we introduce M12L24 cages as siRNA delivery agents. We used four functionalized building blocks to form M12L24 nanocages. Dynamic light scattering showed that well-defined 130 nm nanocage/siRNA assemblies formed with positive zeta potentials. Cell-specific siRNA-mediated green fluorescent protein (GFP) silencing, controlled by the metal used for nanocage formation, was obtained. A Pt12L24 nanocage was highly effective in delivering siRNA to U2OS cells but showed little efficiency for HeLa cells. The less stable Pd12L24 nanocage derived from the same building block displayed effective GFP silencing for HeLa cells but not for U2OS cells. The ease of preparation and the ability to tune the binding strength, together with the specific siRNA delivery efficiency depending on the building blocks and metals, show potential for future siRNA delivery applications." @default.
- W4366267771 created "2023-04-20" @default.
- W4366267771 creator A5002395525 @default.
- W4366267771 creator A5009101213 @default.
- W4366267771 creator A5013850715 @default.
- W4366267771 creator A5040715269 @default.
- W4366267771 creator A5048157906 @default.
- W4366267771 creator A5055861885 @default.
- W4366267771 creator A5082191409 @default.
- W4366267771 creator A5082824780 @default.
- W4366267771 date "2023-06-01" @default.
- W4366267771 modified "2023-10-16" @default.
- W4366267771 title "The application of M12L24 nanocages as cell-specific siRNA delivery agents in vitro" @default.
- W4366267771 cites W1591560031 @default.
- W4366267771 cites W1964211955 @default.
- W4366267771 cites W1965743698 @default.
- W4366267771 cites W1985040895 @default.
- W4366267771 cites W1987494327 @default.
- W4366267771 cites W2012894204 @default.
- W4366267771 cites W2019411198 @default.
- W4366267771 cites W2027022352 @default.
- W4366267771 cites W2029380542 @default.
- W4366267771 cites W2032579724 @default.
- W4366267771 cites W2037626702 @default.
- W4366267771 cites W2042968293 @default.
- W4366267771 cites W2050564345 @default.
- W4366267771 cites W2050881037 @default.
- W4366267771 cites W2058313023 @default.
- W4366267771 cites W2063802293 @default.
- W4366267771 cites W2069683015 @default.
- W4366267771 cites W2073026167 @default.
- W4366267771 cites W2084121938 @default.
- W4366267771 cites W2084252835 @default.
- W4366267771 cites W2116424844 @default.
- W4366267771 cites W2118980569 @default.
- W4366267771 cites W2119539495 @default.
- W4366267771 cites W2120894192 @default.
- W4366267771 cites W2135655803 @default.
- W4366267771 cites W2136965638 @default.
- W4366267771 cites W2143743183 @default.
- W4366267771 cites W2146138017 @default.
- W4366267771 cites W2171695814 @default.
- W4366267771 cites W2303836391 @default.
- W4366267771 cites W2468896753 @default.
- W4366267771 cites W2500771839 @default.
- W4366267771 cites W2509060679 @default.
- W4366267771 cites W2531212443 @default.
- W4366267771 cites W2537272949 @default.
- W4366267771 cites W2605856867 @default.
- W4366267771 cites W2738497284 @default.
- W4366267771 cites W2778319634 @default.
- W4366267771 cites W2803581084 @default.
- W4366267771 cites W2890523993 @default.
- W4366267771 cites W2893168313 @default.
- W4366267771 cites W2905612414 @default.
- W4366267771 cites W2920438880 @default.
- W4366267771 cites W2946545951 @default.
- W4366267771 cites W2947812242 @default.
- W4366267771 cites W2954470761 @default.
- W4366267771 cites W2969635519 @default.
- W4366267771 cites W3007796728 @default.
- W4366267771 cites W3025307463 @default.
- W4366267771 cites W3035764705 @default.
- W4366267771 cites W3036515335 @default.
- W4366267771 cites W3102899245 @default.
- W4366267771 cites W3113017530 @default.
- W4366267771 cites W3113178943 @default.
- W4366267771 cites W3126771712 @default.
- W4366267771 cites W3138032810 @default.
- W4366267771 cites W3146640395 @default.
- W4366267771 cites W3158344853 @default.
- W4366267771 cites W3163472349 @default.
- W4366267771 cites W3174828406 @default.
- W4366267771 cites W3176880957 @default.
- W4366267771 cites W3195970185 @default.
- W4366267771 cites W4223968391 @default.
- W4366267771 cites W4229040159 @default.
- W4366267771 doi "https://doi.org/10.1016/j.chempr.2023.03.018" @default.
- W4366267771 hasPublicationYear "2023" @default.
- W4366267771 type Work @default.
- W4366267771 citedByCount "0" @default.
- W4366267771 crossrefType "journal-article" @default.
- W4366267771 hasAuthorship W4366267771A5002395525 @default.
- W4366267771 hasAuthorship W4366267771A5009101213 @default.
- W4366267771 hasAuthorship W4366267771A5013850715 @default.
- W4366267771 hasAuthorship W4366267771A5040715269 @default.
- W4366267771 hasAuthorship W4366267771A5048157906 @default.
- W4366267771 hasAuthorship W4366267771A5055861885 @default.
- W4366267771 hasAuthorship W4366267771A5082191409 @default.
- W4366267771 hasAuthorship W4366267771A5082824780 @default.
- W4366267771 hasConcept C104317684 @default.
- W4366267771 hasConcept C119056186 @default.
- W4366267771 hasConcept C12554922 @default.
- W4366267771 hasConcept C128355301 @default.
- W4366267771 hasConcept C142613039 @default.
- W4366267771 hasConcept C161790260 @default.
- W4366267771 hasConcept C166703698 @default.
- W4366267771 hasConcept C171250308 @default.