Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366273399> ?p ?o ?g. }
- W4366273399 endingPage "101602" @default.
- W4366273399 startingPage "101602" @default.
- W4366273399 abstract "As an abrupt epidemic occurs, healthcare systems are shocked by the surge in the number of susceptible patients' demands, and decision-makers mostly rely on their frame of reference for urgent decision-making. Many reports have declared the COVID-19 impediments to trading and global economic growth. This study aims to provide a mathematical model to support pharmaceutical supply chain planning during the COVID-19 epidemic. Additionally, it aims to offer new insights into hospital supply chain problems by unifying cold and non-cold chains and considering a wide range of pharmaceuticals and vaccines. This approach is unprecedented and includes an analysis of various pharmaceutical features such as temperature, shelf life, priority, and clustering. To propose a model for planning the pharmaceutical supply chains, a mixed-integer linear programming (MILP) model is used for a four-echelon supply chain design. This model aims to minimize the costs involved in the pharmaceutical supply chain by maintaining an acceptable service level. Also, this paper considers uncertainty as an intrinsic part of the problem and addresses it through the wait-and-see method. Furthermore, an unexplored unsupervised learning method in the realm of supply chain planning has been used to cluster the pharmaceuticals and the vaccines and its merits and drawbacks are proposed. A case of Tehran hospitals with real data has been used to show the model's capabilities, as well. Based on the obtained results, the proposed approach is able to reach the optimum service level in the COVID conditions while maintaining a reduced cost. The experiment illustrates that the hospitals' adjacency and emergency orders alleviated the service level significantly. The proposed MILP model has proven to be efficient in providing a practical intuition for decision-makers. The clustering technique reduced the size of the problem and the time required to solve the model considerably." @default.
- W4366273399 created "2023-04-20" @default.
- W4366273399 creator A5000985987 @default.
- W4366273399 creator A5003454969 @default.
- W4366273399 creator A5075876941 @default.
- W4366273399 date "2023-06-01" @default.
- W4366273399 modified "2023-10-03" @default.
- W4366273399 title "Supply chain planning of vaccine and pharmaceutical clusters under uncertainty: The case of COVID-19" @default.
- W4366273399 cites W2034556874 @default.
- W4366273399 cites W2037378588 @default.
- W4366273399 cites W2110914302 @default.
- W4366273399 cites W2175408112 @default.
- W4366273399 cites W2203698880 @default.
- W4366273399 cites W2511208840 @default.
- W4366273399 cites W2614029147 @default.
- W4366273399 cites W2771050975 @default.
- W4366273399 cites W2772546292 @default.
- W4366273399 cites W2775614706 @default.
- W4366273399 cites W2887571956 @default.
- W4366273399 cites W2896598246 @default.
- W4366273399 cites W2901462862 @default.
- W4366273399 cites W2966788382 @default.
- W4366273399 cites W2979003187 @default.
- W4366273399 cites W2998137047 @default.
- W4366273399 cites W3007518671 @default.
- W4366273399 cites W3025780634 @default.
- W4366273399 cites W3027586942 @default.
- W4366273399 cites W3032764763 @default.
- W4366273399 cites W3036495543 @default.
- W4366273399 cites W3092434367 @default.
- W4366273399 cites W3121568017 @default.
- W4366273399 cites W3121844955 @default.
- W4366273399 cites W3124621599 @default.
- W4366273399 cites W3166184737 @default.
- W4366273399 cites W3170957879 @default.
- W4366273399 cites W3194913519 @default.
- W4366273399 cites W4205553328 @default.
- W4366273399 cites W4224882369 @default.
- W4366273399 cites W4280530897 @default.
- W4366273399 cites W4281688169 @default.
- W4366273399 cites W4285678563 @default.
- W4366273399 cites W4291002297 @default.
- W4366273399 cites W4293421861 @default.
- W4366273399 cites W4295066869 @default.
- W4366273399 cites W4296639383 @default.
- W4366273399 cites W4298395456 @default.
- W4366273399 cites W4306756868 @default.
- W4366273399 cites W4308037378 @default.
- W4366273399 cites W4312048534 @default.
- W4366273399 cites W4320169730 @default.
- W4366273399 cites W938689926 @default.
- W4366273399 doi "https://doi.org/10.1016/j.seps.2023.101602" @default.
- W4366273399 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37255585" @default.
- W4366273399 hasPublicationYear "2023" @default.
- W4366273399 type Work @default.
- W4366273399 citedByCount "2" @default.
- W4366273399 countsByYear W43662733992023 @default.
- W4366273399 crossrefType "journal-article" @default.
- W4366273399 hasAuthorship W4366273399A5000985987 @default.
- W4366273399 hasAuthorship W4366273399A5003454969 @default.
- W4366273399 hasAuthorship W4366273399A5075876941 @default.
- W4366273399 hasBestOaLocation W43662733991 @default.
- W4366273399 hasConcept C108713360 @default.
- W4366273399 hasConcept C112930515 @default.
- W4366273399 hasConcept C127413603 @default.
- W4366273399 hasConcept C142724271 @default.
- W4366273399 hasConcept C144133560 @default.
- W4366273399 hasConcept C162853370 @default.
- W4366273399 hasConcept C2779134260 @default.
- W4366273399 hasConcept C2779652045 @default.
- W4366273399 hasConcept C2780114722 @default.
- W4366273399 hasConcept C2780378061 @default.
- W4366273399 hasConcept C3008058167 @default.
- W4366273399 hasConcept C41008148 @default.
- W4366273399 hasConcept C42475967 @default.
- W4366273399 hasConcept C44104985 @default.
- W4366273399 hasConcept C524204448 @default.
- W4366273399 hasConcept C71924100 @default.
- W4366273399 hasConcept C78519656 @default.
- W4366273399 hasConcept C98274493 @default.
- W4366273399 hasConceptScore W4366273399C108713360 @default.
- W4366273399 hasConceptScore W4366273399C112930515 @default.
- W4366273399 hasConceptScore W4366273399C127413603 @default.
- W4366273399 hasConceptScore W4366273399C142724271 @default.
- W4366273399 hasConceptScore W4366273399C144133560 @default.
- W4366273399 hasConceptScore W4366273399C162853370 @default.
- W4366273399 hasConceptScore W4366273399C2779134260 @default.
- W4366273399 hasConceptScore W4366273399C2779652045 @default.
- W4366273399 hasConceptScore W4366273399C2780114722 @default.
- W4366273399 hasConceptScore W4366273399C2780378061 @default.
- W4366273399 hasConceptScore W4366273399C3008058167 @default.
- W4366273399 hasConceptScore W4366273399C41008148 @default.
- W4366273399 hasConceptScore W4366273399C42475967 @default.
- W4366273399 hasConceptScore W4366273399C44104985 @default.
- W4366273399 hasConceptScore W4366273399C524204448 @default.
- W4366273399 hasConceptScore W4366273399C71924100 @default.
- W4366273399 hasConceptScore W4366273399C78519656 @default.
- W4366273399 hasConceptScore W4366273399C98274493 @default.