Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366273864> ?p ?o ?g. }
- W4366273864 endingPage "127515" @default.
- W4366273864 startingPage "127515" @default.
- W4366273864 abstract "The hydrogen-enriched natural gas engines (HENGEs) have recently found huge popularity. Despite the broad range of applications of the HENGE, their environmentally-associated problems, like CH4, CO, and NOx emissions are not known. Hence, the objective of this study is to model the emission characteristics of HENGEs by the multilayer perceptron neural network (MLPNN) and multi-output least squares support vector regression (MLS-SVR) methods. In this regard, HENGEs emissions are simulated as a function of hydrogen/fuel ratio, engine speed, manifold absolute pressure, excess air ratio, and ignition time. Relevancy analysis showed that the excess air ratio is the most influential factor on both methane and NOx emission, while the carbon monoxide emission mainly governs by the manifold absolute pressure. Statistical analyses indicate that the MLS-SVR implements this multi-input-multi-output (MIMO) problem more accurately than the MLPNN. The leverage method identifies more than 98% of the experimental datasets as valid measurements. The deployed MLS-SVR estimate 3 × 228 experimentally-measured methane, carbon monoxide, and NOx emissions with the absolute average relative deviation of 3.55%, 3.30%, and 4.22%, respectively." @default.
- W4366273864 created "2023-04-20" @default.
- W4366273864 creator A5025951318 @default.
- W4366273864 creator A5066885377 @default.
- W4366273864 creator A5067776197 @default.
- W4366273864 date "2023-08-01" @default.
- W4366273864 modified "2023-10-18" @default.
- W4366273864 title "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses" @default.
- W4366273864 cites W1596717185 @default.
- W4366273864 cites W1965179854 @default.
- W4366273864 cites W1966225794 @default.
- W4366273864 cites W1974891193 @default.
- W4366273864 cites W1988748730 @default.
- W4366273864 cites W1991952462 @default.
- W4366273864 cites W1992038525 @default.
- W4366273864 cites W2013355544 @default.
- W4366273864 cites W2041387425 @default.
- W4366273864 cites W2047554075 @default.
- W4366273864 cites W2048201795 @default.
- W4366273864 cites W2052143150 @default.
- W4366273864 cites W2082274261 @default.
- W4366273864 cites W2087347434 @default.
- W4366273864 cites W2087717685 @default.
- W4366273864 cites W2120402487 @default.
- W4366273864 cites W2165698076 @default.
- W4366273864 cites W2377752863 @default.
- W4366273864 cites W2626103714 @default.
- W4366273864 cites W2758679884 @default.
- W4366273864 cites W2793763663 @default.
- W4366273864 cites W2836549994 @default.
- W4366273864 cites W2885732175 @default.
- W4366273864 cites W2886337536 @default.
- W4366273864 cites W2898011573 @default.
- W4366273864 cites W2898461917 @default.
- W4366273864 cites W2898979442 @default.
- W4366273864 cites W2900682747 @default.
- W4366273864 cites W2946824552 @default.
- W4366273864 cites W2981772589 @default.
- W4366273864 cites W2987500915 @default.
- W4366273864 cites W3012390780 @default.
- W4366273864 cites W3037496014 @default.
- W4366273864 cites W3092164301 @default.
- W4366273864 cites W3111268469 @default.
- W4366273864 cites W3115186128 @default.
- W4366273864 cites W3133338082 @default.
- W4366273864 cites W3136714975 @default.
- W4366273864 cites W3158199698 @default.
- W4366273864 cites W3164693126 @default.
- W4366273864 cites W3192935193 @default.
- W4366273864 cites W3193895443 @default.
- W4366273864 cites W3194002935 @default.
- W4366273864 cites W3203798440 @default.
- W4366273864 cites W375343134 @default.
- W4366273864 cites W4200474502 @default.
- W4366273864 cites W4210550568 @default.
- W4366273864 cites W4220700028 @default.
- W4366273864 cites W4248539794 @default.
- W4366273864 cites W4280647913 @default.
- W4366273864 cites W4281690383 @default.
- W4366273864 cites W4281723838 @default.
- W4366273864 cites W4296101946 @default.
- W4366273864 cites W4296699986 @default.
- W4366273864 cites W4303684840 @default.
- W4366273864 cites W4310114984 @default.
- W4366273864 cites W4316664518 @default.
- W4366273864 cites W4322505366 @default.
- W4366273864 doi "https://doi.org/10.1016/j.energy.2023.127515" @default.
- W4366273864 hasPublicationYear "2023" @default.
- W4366273864 type Work @default.
- W4366273864 citedByCount "12" @default.
- W4366273864 countsByYear W43662738642023 @default.
- W4366273864 crossrefType "journal-article" @default.
- W4366273864 hasAuthorship W4366273864A5025951318 @default.
- W4366273864 hasAuthorship W4366273864A5066885377 @default.
- W4366273864 hasAuthorship W4366273864A5067776197 @default.
- W4366273864 hasConcept C105923489 @default.
- W4366273864 hasConcept C161790260 @default.
- W4366273864 hasConcept C178790620 @default.
- W4366273864 hasConcept C185592680 @default.
- W4366273864 hasConcept C203032635 @default.
- W4366273864 hasConcept C39432304 @default.
- W4366273864 hasConcept C512735826 @default.
- W4366273864 hasConcept C516920438 @default.
- W4366273864 hasConcept C55493867 @default.
- W4366273864 hasConcept C59427239 @default.
- W4366273864 hasConceptScore W4366273864C105923489 @default.
- W4366273864 hasConceptScore W4366273864C161790260 @default.
- W4366273864 hasConceptScore W4366273864C178790620 @default.
- W4366273864 hasConceptScore W4366273864C185592680 @default.
- W4366273864 hasConceptScore W4366273864C203032635 @default.
- W4366273864 hasConceptScore W4366273864C39432304 @default.
- W4366273864 hasConceptScore W4366273864C512735826 @default.
- W4366273864 hasConceptScore W4366273864C516920438 @default.
- W4366273864 hasConceptScore W4366273864C55493867 @default.
- W4366273864 hasConceptScore W4366273864C59427239 @default.
- W4366273864 hasLocation W43662738641 @default.
- W4366273864 hasOpenAccess W4366273864 @default.
- W4366273864 hasPrimaryLocation W43662738641 @default.