Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366277571> ?p ?o ?g. }
- W4366277571 endingPage "1911" @default.
- W4366277571 startingPage "1911" @default.
- W4366277571 abstract "Recently, many-objective optimization problems (MaOPs) have become a hot issue of interest in academia and industry, and many more many-objective evolutionary algorithms (MaOEAs) have been proposed. NSGA-II/SDR (NSGA-II with a strengthened dominance relation) is an improved NSGA-II, created by replacing the traditional Pareto dominance relation with a new dominance relation, termed SDR, which is better than the original algorithm in solving small-scale MaOPs with few decision variables, but performs poorly in large-scale MaOPs. To address these problems, we added the following improvements to the NSGA-II/SDR to obtain NSGA-II/SDR-OLS, which enables it to better achieve a balance between population convergence and diversity when solving large-scale MaOPs: (1) The opposition-based learning (OBL) strategy is introduced in the initial population initialization stage, and the final initial population is formed by the initial population and the opposition-based population, which optimizes the quality and convergence of the population; (2) the local search (LS) strategy is introduced to expand the diversity of populations by finding neighborhood solutions, in order to avoid solutions falling into local optima too early. NSGA-II/SDR-OLS is compared with the original algorithm on nine benchmark problems to verify the effectiveness of its improvement. Then, we compare our algorithm with six existing algorithms, which are promising region-based multi-objective evolutionary algorithms (PREA), a scalable small subpopulation-based covariance matrix adaptation evolution strategy (S3-CMA-ES), a decomposition-based multi-objective evolutionary algorithm guided by growing neural gas (DEA-GNG), a reference vector-guided evolutionary algorithm (RVEA), NSGA-II with conflict-based partitioning strategy (NSGA-II-conflict), and a genetic algorithm using reference-point-based non-dominated sorting (NSGA-III).The proposed algorithm has achieved the best results in the vast majority of test cases, indicating that our algorithm has strong competitiveness." @default.
- W4366277571 created "2023-04-20" @default.
- W4366277571 creator A5016393348 @default.
- W4366277571 creator A5030257339 @default.
- W4366277571 creator A5034297632 @default.
- W4366277571 date "2023-04-18" @default.
- W4366277571 modified "2023-09-29" @default.
- W4366277571 title "NSGA-II/SDR-OLS: A Novel Large-Scale Many-Objective Optimization Method Using Opposition-Based Learning and Local Search" @default.
- W4366277571 cites W1499378422 @default.
- W4366277571 cites W1588375755 @default.
- W4366277571 cites W1662894842 @default.
- W4366277571 cites W1984576194 @default.
- W4366277571 cites W2013317277 @default.
- W4366277571 cites W2020320008 @default.
- W4366277571 cites W2022485595 @default.
- W4366277571 cites W2042011228 @default.
- W4366277571 cites W2045050140 @default.
- W4366277571 cites W2055142708 @default.
- W4366277571 cites W2063375245 @default.
- W4366277571 cites W2067544246 @default.
- W4366277571 cites W2072661909 @default.
- W4366277571 cites W2073478661 @default.
- W4366277571 cites W2085507535 @default.
- W4366277571 cites W2097536098 @default.
- W4366277571 cites W2107941094 @default.
- W4366277571 cites W2108968575 @default.
- W4366277571 cites W2116661285 @default.
- W4366277571 cites W2126105956 @default.
- W4366277571 cites W2128357515 @default.
- W4366277571 cites W2143381319 @default.
- W4366277571 cites W2147926599 @default.
- W4366277571 cites W2152551290 @default.
- W4366277571 cites W2329749247 @default.
- W4366277571 cites W2343601797 @default.
- W4366277571 cites W2469950730 @default.
- W4366277571 cites W2512033555 @default.
- W4366277571 cites W2513211214 @default.
- W4366277571 cites W2546584549 @default.
- W4366277571 cites W2558581367 @default.
- W4366277571 cites W2570235502 @default.
- W4366277571 cites W2594575977 @default.
- W4366277571 cites W2775348664 @default.
- W4366277571 cites W2780725426 @default.
- W4366277571 cites W2791738125 @default.
- W4366277571 cites W2888338796 @default.
- W4366277571 cites W2897208679 @default.
- W4366277571 cites W2949306957 @default.
- W4366277571 cites W2953123521 @default.
- W4366277571 cites W2956065540 @default.
- W4366277571 cites W2998173449 @default.
- W4366277571 cites W2998631884 @default.
- W4366277571 cites W2999593349 @default.
- W4366277571 cites W3004126271 @default.
- W4366277571 cites W3008126784 @default.
- W4366277571 cites W3033720139 @default.
- W4366277571 cites W3038059291 @default.
- W4366277571 cites W3041974779 @default.
- W4366277571 cites W3046667063 @default.
- W4366277571 cites W3048781873 @default.
- W4366277571 cites W3086548118 @default.
- W4366277571 cites W3091990249 @default.
- W4366277571 cites W3100195331 @default.
- W4366277571 cites W3123270512 @default.
- W4366277571 cites W3137665052 @default.
- W4366277571 cites W3159351996 @default.
- W4366277571 cites W3175111012 @default.
- W4366277571 cites W3181078230 @default.
- W4366277571 cites W4200470396 @default.
- W4366277571 cites W4206926907 @default.
- W4366277571 cites W4210761325 @default.
- W4366277571 cites W4225288501 @default.
- W4366277571 cites W4288048318 @default.
- W4366277571 cites W4294794245 @default.
- W4366277571 cites W4303432241 @default.
- W4366277571 cites W4320169857 @default.
- W4366277571 doi "https://doi.org/10.3390/math11081911" @default.
- W4366277571 hasPublicationYear "2023" @default.
- W4366277571 type Work @default.
- W4366277571 citedByCount "1" @default.
- W4366277571 countsByYear W43662775712023 @default.
- W4366277571 crossrefType "journal-article" @default.
- W4366277571 hasAuthorship W4366277571A5016393348 @default.
- W4366277571 hasAuthorship W4366277571A5030257339 @default.
- W4366277571 hasAuthorship W4366277571A5034297632 @default.
- W4366277571 hasBestOaLocation W43662775711 @default.
- W4366277571 hasConcept C105902424 @default.
- W4366277571 hasConcept C119857082 @default.
- W4366277571 hasConcept C126255220 @default.
- W4366277571 hasConcept C137836250 @default.
- W4366277571 hasConcept C141934464 @default.
- W4366277571 hasConcept C144024400 @default.
- W4366277571 hasConcept C149923435 @default.
- W4366277571 hasConcept C159149176 @default.
- W4366277571 hasConcept C207002847 @default.
- W4366277571 hasConcept C2908647359 @default.
- W4366277571 hasConcept C33923547 @default.
- W4366277571 hasConcept C41008148 @default.
- W4366277571 hasConcept C68781425 @default.