Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366281029> ?p ?o ?g. }
- W4366281029 endingPage "169" @default.
- W4366281029 startingPage "169" @default.
- W4366281029 abstract "Structural cracks have serious repercussions on the safety, adaptability, and longevity of structures. Therefore, assessing cracks is an important parameter when evaluating the quality of concrete construction. As numerous cutting-edge automated inspection systems that exploit cracks have been developed, the necessity for individual/personal onsite inspection has reduced exponentially. However, these methods need to be improved in terms of cost efficiency and accuracy. The deep-learning-based assessment approaches for structural systems have seen a significant development noticed by the structural health monitoring (SHM) community. Convolutional neural networks (CNNs) are vital in these deep learning methods. Technologies such as convolutional neural networks hold promise for precise and accurate condition evaluation. Moreover, transfer learning enables users to use CNNs without needing a comprehensive grasp of algorithms or the capability to modify pre-trained networks for particular purposes. Within the context of this study, a thorough analysis of well-known pre-trained networks for classifying the cracks in buildings made of concrete is conducted. The classification performance of convolutional neural network designs such as VGG16, VGG19, ResNet 50, MobileNet, and Xception is compared to one another with the concrete crack image dataset. It is identified that the ResNet50-based classifier provided accuracy scores of 99.91% for training and 99.88% for testing. Xception architecture delivered the least performance, with training and test accuracy of 99.64% and 98.82%, respectively." @default.
- W4366281029 created "2023-04-20" @default.
- W4366281029 creator A5002886927 @default.
- W4366281029 creator A5004218465 @default.
- W4366281029 creator A5038602257 @default.
- W4366281029 creator A5068095328 @default.
- W4366281029 creator A5090844494 @default.
- W4366281029 date "2023-04-18" @default.
- W4366281029 modified "2023-10-05" @default.
- W4366281029 title "A Comparative Study on Crack Detection in Concrete Walls Using Transfer Learning Techniques" @default.
- W4366281029 cites W2128628015 @default.
- W4366281029 cites W2194775991 @default.
- W4366281029 cites W2330219538 @default.
- W4366281029 cites W2407692387 @default.
- W4366281029 cites W2531409750 @default.
- W4366281029 cites W2598804554 @default.
- W4366281029 cites W2736924138 @default.
- W4366281029 cites W2800346298 @default.
- W4366281029 cites W2810796902 @default.
- W4366281029 cites W2887597701 @default.
- W4366281029 cites W2899803215 @default.
- W4366281029 cites W2905163589 @default.
- W4366281029 cites W2918146790 @default.
- W4366281029 cites W2976255582 @default.
- W4366281029 cites W2989581988 @default.
- W4366281029 cites W3005498204 @default.
- W4366281029 cites W3010717703 @default.
- W4366281029 cites W3011200270 @default.
- W4366281029 cites W3026226589 @default.
- W4366281029 cites W3033645921 @default.
- W4366281029 cites W3042450374 @default.
- W4366281029 cites W3080613661 @default.
- W4366281029 cites W3092785682 @default.
- W4366281029 cites W3120644159 @default.
- W4366281029 cites W3128264602 @default.
- W4366281029 cites W3130041413 @default.
- W4366281029 cites W3166349168 @default.
- W4366281029 cites W3205511895 @default.
- W4366281029 cites W4210253497 @default.
- W4366281029 cites W4210746697 @default.
- W4366281029 cites W4220727636 @default.
- W4366281029 cites W4220756717 @default.
- W4366281029 cites W4224281653 @default.
- W4366281029 cites W4229459020 @default.
- W4366281029 cites W4280491056 @default.
- W4366281029 cites W4281736374 @default.
- W4366281029 cites W4281738662 @default.
- W4366281029 cites W4281907710 @default.
- W4366281029 cites W4311974463 @default.
- W4366281029 cites W4317436928 @default.
- W4366281029 cites W4321336893 @default.
- W4366281029 cites W4321781505 @default.
- W4366281029 cites W4361005797 @default.
- W4366281029 doi "https://doi.org/10.3390/jcs7040169" @default.
- W4366281029 hasPublicationYear "2023" @default.
- W4366281029 type Work @default.
- W4366281029 citedByCount "2" @default.
- W4366281029 countsByYear W43662810292023 @default.
- W4366281029 crossrefType "journal-article" @default.
- W4366281029 hasAuthorship W4366281029A5002886927 @default.
- W4366281029 hasAuthorship W4366281029A5004218465 @default.
- W4366281029 hasAuthorship W4366281029A5038602257 @default.
- W4366281029 hasAuthorship W4366281029A5068095328 @default.
- W4366281029 hasAuthorship W4366281029A5090844494 @default.
- W4366281029 hasBestOaLocation W43662810291 @default.
- W4366281029 hasConcept C108583219 @default.
- W4366281029 hasConcept C119857082 @default.
- W4366281029 hasConcept C127413603 @default.
- W4366281029 hasConcept C150899416 @default.
- W4366281029 hasConcept C151730666 @default.
- W4366281029 hasConcept C153180895 @default.
- W4366281029 hasConcept C154945302 @default.
- W4366281029 hasConcept C165696696 @default.
- W4366281029 hasConcept C171268870 @default.
- W4366281029 hasConcept C177606310 @default.
- W4366281029 hasConcept C18903297 @default.
- W4366281029 hasConcept C199360897 @default.
- W4366281029 hasConcept C2776247918 @default.
- W4366281029 hasConcept C2779343474 @default.
- W4366281029 hasConcept C38652104 @default.
- W4366281029 hasConcept C41008148 @default.
- W4366281029 hasConcept C50644808 @default.
- W4366281029 hasConcept C66938386 @default.
- W4366281029 hasConcept C81363708 @default.
- W4366281029 hasConcept C86803240 @default.
- W4366281029 hasConcept C95623464 @default.
- W4366281029 hasConceptScore W4366281029C108583219 @default.
- W4366281029 hasConceptScore W4366281029C119857082 @default.
- W4366281029 hasConceptScore W4366281029C127413603 @default.
- W4366281029 hasConceptScore W4366281029C150899416 @default.
- W4366281029 hasConceptScore W4366281029C151730666 @default.
- W4366281029 hasConceptScore W4366281029C153180895 @default.
- W4366281029 hasConceptScore W4366281029C154945302 @default.
- W4366281029 hasConceptScore W4366281029C165696696 @default.
- W4366281029 hasConceptScore W4366281029C171268870 @default.
- W4366281029 hasConceptScore W4366281029C177606310 @default.
- W4366281029 hasConceptScore W4366281029C18903297 @default.
- W4366281029 hasConceptScore W4366281029C199360897 @default.