Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366281310> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W4366281310 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> Convective wind gusts (CGs) are usually related to thunderstorms, and they may cause great structural damage and serious hazards, such as train derailment, service interruption, and building collapse. Due to the small-scale and nonstationary nature of CGs, reliable CGs nowcasting with high spatial and temporal resolutions has remained unattainable. In this study, a novel nowcasting model based on deep learning – namely, CGsNet – is developed for 0–2 h of quantitative CGs nowcasting, first achieving minute-kilometer-level forecasts. CGsNet is a physics-constrained model established by training on large corpora of average surface wind speed (ASWS) and radar observations, it can produce realistic and spatiotemporally consistent ASWS predictions in CGs events. By combining the gust factor (1.77, the ratio of the observed peak wind gust speed (PWGS) to the ASWS) with the ASWS predictions, the PWGS forecasts are estimated with a spatial resolution of 0.01° × 0.01° and a 6-minute temporal resolution. CGsNet is shown to be effective, and it has an essential advantage in learning the spatiotemporal features of CGs. In addition, quantitative evaluation experiments indicate that CGsNet exhibits higher generalization performance for CGs than the traditional nowcasting method based on numerical weather prediction models. CGs nowcasting technology can be applied to provide real-time quantitative CGs forecasts and alerts the damaging wind events in meteorological services." @default.
- W4366281310 created "2023-04-20" @default.
- W4366281310 creator A5057709854 @default.
- W4366281310 date "2023-04-18" @default.
- W4366281310 modified "2023-09-27" @default.
- W4366281310 title "Comment on gmd-2022-272" @default.
- W4366281310 doi "https://doi.org/10.5194/gmd-2022-272-ac1" @default.
- W4366281310 hasPublicationYear "2023" @default.
- W4366281310 type Work @default.
- W4366281310 citedByCount "0" @default.
- W4366281310 crossrefType "peer-review" @default.
- W4366281310 hasAuthorship W4366281310A5057709854 @default.
- W4366281310 hasBestOaLocation W43662813101 @default.
- W4366281310 hasConcept C153294291 @default.
- W4366281310 hasConcept C161067210 @default.
- W4366281310 hasConcept C205649164 @default.
- W4366281310 hasConcept C2778755073 @default.
- W4366281310 hasConcept C2781013037 @default.
- W4366281310 hasConcept C39432304 @default.
- W4366281310 hasConcept C41008148 @default.
- W4366281310 hasConcept C58640448 @default.
- W4366281310 hasConcept C80316258 @default.
- W4366281310 hasConceptScore W4366281310C153294291 @default.
- W4366281310 hasConceptScore W4366281310C161067210 @default.
- W4366281310 hasConceptScore W4366281310C205649164 @default.
- W4366281310 hasConceptScore W4366281310C2778755073 @default.
- W4366281310 hasConceptScore W4366281310C2781013037 @default.
- W4366281310 hasConceptScore W4366281310C39432304 @default.
- W4366281310 hasConceptScore W4366281310C41008148 @default.
- W4366281310 hasConceptScore W4366281310C58640448 @default.
- W4366281310 hasConceptScore W4366281310C80316258 @default.
- W4366281310 hasLocation W43662813101 @default.
- W4366281310 hasOpenAccess W4366281310 @default.
- W4366281310 hasPrimaryLocation W43662813101 @default.
- W4366281310 hasRelatedWork W1500265285 @default.
- W4366281310 hasRelatedWork W2130777663 @default.
- W4366281310 hasRelatedWork W2138824686 @default.
- W4366281310 hasRelatedWork W2164297952 @default.
- W4366281310 hasRelatedWork W2293599620 @default.
- W4366281310 hasRelatedWork W2392778080 @default.
- W4366281310 hasRelatedWork W2783503834 @default.
- W4366281310 hasRelatedWork W3043142549 @default.
- W4366281310 hasRelatedWork W4321491554 @default.
- W4366281310 hasRelatedWork W2503385942 @default.
- W4366281310 isParatext "false" @default.
- W4366281310 isRetracted "false" @default.
- W4366281310 workType "peer-review" @default.