Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366283695> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4366283695 abstract "<sec> <title>BACKGROUND</title> In this paper, the authors will present practical and accessible weighting and calibration techniques to address the unique nuances of hybrid samples, especially when surveilling the health of hard-to-get cohorts such as teens and young adults. We will start with a comprehensive review of the traditional method of composite estimation. Subsequently, the method of Composite Weighting is introduced that is significantly more efficient, both computationally and inferentially when pooling data from multiple surveys. For empirical illustrations, results from three health risk factor surveillance surveys of teens and young adults will be presented with each survey relying on hybrid samples comprised of probability-based components from the Delivery Sequence File (DSF) of the USPS and supplemental components from online panels. </sec> <sec> <title>OBJECTIVE</title> To offer practical and accessible techniques to address the unique nuances of hybrid samples, especially when surveilling the health of hard-to-get cohorts such as teens and young adults. </sec> <sec> <title>METHODS</title> Mathematical derivations and empirical illustration of the proposed method based on current survey data. </sec> <sec> <title>RESULTS</title> Empirical demonstrate using results from three surveillance surveys of teens and young adults that show the proposed method is more efficient, both computationally and inferentially when pooling data from multiple surveys. </sec> <sec> <title>CONCLUSIONS</title> In comparison to the traditional method of composite estimation whereby separate estimates are combined from different surveys one at a time, our proposed composite weighting methodology for integrating survey data offers at least four distinct advantages: 1. The method of composite weighting is vastly less cumbersome than that of composite estimation because it enables researchers to work with a single data file and not multiple sets of data and weights from unintegrated surveys. 2. An integrated database that is larger than any of the individual sample components accommodates more nuanced weighting adjustments than what might be possible with individuals surveys. This becomes especially appealing when one of the surveys is based on a small sample size, whereby coarse weighting can fail to improve the representation of its respondents. 3. Integrated survey data allow more in-depth analyses, particularly when comparisons of smaller analytical subgroups are of interest. Such deep dive multivariate analyses are not feasible when producing separate estimates from individual surveys, some of which could be of modest size. 4. Lastly, composite weighting eliminates extraneous variabilities that are inevitable under composite estimation due to applications of inconsistent weighting procedures for individual surveys, such as use of different benchmarks, raking algorithms, and weight trimming rules. Moreover, survey estimates from the resulting integrated data will be subject to smaller and consistently calculated standard errors courtesy of the larger combined data. </sec>" @default.
- W4366283695 created "2023-04-20" @default.
- W4366283695 creator A5055244415 @default.
- W4366283695 date "2023-04-14" @default.
- W4366283695 modified "2023-09-25" @default.
- W4366283695 title "Advances in Health Surveillance Survey Methods: Improving Inferences from Hybrid Samples (Preprint)" @default.
- W4366283695 cites W1479804680 @default.
- W4366283695 cites W1498391752 @default.
- W4366283695 cites W2022781243 @default.
- W4366283695 cites W2116942087 @default.
- W4366283695 cites W2129122416 @default.
- W4366283695 cites W2161470413 @default.
- W4366283695 cites W2217591236 @default.
- W4366283695 cites W2324992469 @default.
- W4366283695 cites W2325570606 @default.
- W4366283695 cites W2485837772 @default.
- W4366283695 cites W2605455141 @default.
- W4366283695 cites W3141232563 @default.
- W4366283695 cites W4210819794 @default.
- W4366283695 cites W4232498805 @default.
- W4366283695 cites W4234325069 @default.
- W4366283695 cites W4237254037 @default.
- W4366283695 cites W4253034823 @default.
- W4366283695 cites W4255766419 @default.
- W4366283695 doi "https://doi.org/10.2196/preprints.48186" @default.
- W4366283695 hasPublicationYear "2023" @default.
- W4366283695 type Work @default.
- W4366283695 citedByCount "0" @default.
- W4366283695 crossrefType "posted-content" @default.
- W4366283695 hasAuthorship W4366283695A5055244415 @default.
- W4366283695 hasConcept C105795698 @default.
- W4366283695 hasConcept C126838900 @default.
- W4366283695 hasConcept C127413603 @default.
- W4366283695 hasConcept C136764020 @default.
- W4366283695 hasConcept C154945302 @default.
- W4366283695 hasConcept C183115368 @default.
- W4366283695 hasConcept C198477413 @default.
- W4366283695 hasConcept C201995342 @default.
- W4366283695 hasConcept C33923547 @default.
- W4366283695 hasConcept C41008148 @default.
- W4366283695 hasConcept C43169469 @default.
- W4366283695 hasConcept C70437156 @default.
- W4366283695 hasConcept C71924100 @default.
- W4366283695 hasConcept C96250715 @default.
- W4366283695 hasConceptScore W4366283695C105795698 @default.
- W4366283695 hasConceptScore W4366283695C126838900 @default.
- W4366283695 hasConceptScore W4366283695C127413603 @default.
- W4366283695 hasConceptScore W4366283695C136764020 @default.
- W4366283695 hasConceptScore W4366283695C154945302 @default.
- W4366283695 hasConceptScore W4366283695C183115368 @default.
- W4366283695 hasConceptScore W4366283695C198477413 @default.
- W4366283695 hasConceptScore W4366283695C201995342 @default.
- W4366283695 hasConceptScore W4366283695C33923547 @default.
- W4366283695 hasConceptScore W4366283695C41008148 @default.
- W4366283695 hasConceptScore W4366283695C43169469 @default.
- W4366283695 hasConceptScore W4366283695C70437156 @default.
- W4366283695 hasConceptScore W4366283695C71924100 @default.
- W4366283695 hasConceptScore W4366283695C96250715 @default.
- W4366283695 hasLocation W43662836951 @default.
- W4366283695 hasOpenAccess W4366283695 @default.
- W4366283695 hasPrimaryLocation W43662836951 @default.
- W4366283695 hasRelatedWork W1569317608 @default.
- W4366283695 hasRelatedWork W2040978437 @default.
- W4366283695 hasRelatedWork W2062570708 @default.
- W4366283695 hasRelatedWork W2114582993 @default.
- W4366283695 hasRelatedWork W2519422835 @default.
- W4366283695 hasRelatedWork W2599620975 @default.
- W4366283695 hasRelatedWork W2626419207 @default.
- W4366283695 hasRelatedWork W2792080776 @default.
- W4366283695 hasRelatedWork W3003425109 @default.
- W4366283695 hasRelatedWork W3163386204 @default.
- W4366283695 isParatext "false" @default.
- W4366283695 isRetracted "false" @default.
- W4366283695 workType "article" @default.