Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366290459> ?p ?o ?g. }
- W4366290459 abstract "Abstract An accurate diagnosis of pulmonary hypertension (PH) is crucial to ensure that patients receive timely treatment. One of the used imaging models to detect pulmonary hypertension is the X-ray. Therefore, a new automated PH-type classification model has been presented to depict the separation ability of deep learning for PH types. We retrospectively enrolled 6642 images of patients with PH and the control group. A new X-ray image dataset was collected from a multicentre in this work. A transfer learning-based image classification model has been presented in classifying PH types. Our proposed model was applied to the collected dataset, and this dataset contains six categories (five PH and a non-PH). The presented deep feature engineering (computer vision) model attained 86.14% accuracy on this dataset. According to the extracted ROC curve, the average area under the curve rate has been calculated at 0.945. Therefore, we believe that our proposed model can easily separate PH and non-PH X-ray images." @default.
- W4366290459 created "2023-04-20" @default.
- W4366290459 creator A5000322801 @default.
- W4366290459 creator A5001360069 @default.
- W4366290459 creator A5003591811 @default.
- W4366290459 creator A5004456396 @default.
- W4366290459 creator A5007330890 @default.
- W4366290459 creator A5008140395 @default.
- W4366290459 creator A5009970479 @default.
- W4366290459 creator A5011045933 @default.
- W4366290459 creator A5011273661 @default.
- W4366290459 creator A5013262795 @default.
- W4366290459 creator A5014815218 @default.
- W4366290459 creator A5016510851 @default.
- W4366290459 creator A5017130143 @default.
- W4366290459 creator A5017589028 @default.
- W4366290459 creator A5022603359 @default.
- W4366290459 creator A5023242454 @default.
- W4366290459 creator A5027495669 @default.
- W4366290459 creator A5028773619 @default.
- W4366290459 creator A5029287310 @default.
- W4366290459 creator A5029667871 @default.
- W4366290459 creator A5031622587 @default.
- W4366290459 creator A5032529954 @default.
- W4366290459 creator A5032674513 @default.
- W4366290459 creator A5033562697 @default.
- W4366290459 creator A5033894817 @default.
- W4366290459 creator A5033942443 @default.
- W4366290459 creator A5034325951 @default.
- W4366290459 creator A5036039095 @default.
- W4366290459 creator A5039146807 @default.
- W4366290459 creator A5040533231 @default.
- W4366290459 creator A5040735859 @default.
- W4366290459 creator A5040772000 @default.
- W4366290459 creator A5041797006 @default.
- W4366290459 creator A5044035760 @default.
- W4366290459 creator A5049959501 @default.
- W4366290459 creator A5052044998 @default.
- W4366290459 creator A5054319994 @default.
- W4366290459 creator A5054330872 @default.
- W4366290459 creator A5058341833 @default.
- W4366290459 creator A5060188761 @default.
- W4366290459 creator A5060290871 @default.
- W4366290459 creator A5062443674 @default.
- W4366290459 creator A5065795817 @default.
- W4366290459 creator A5066286459 @default.
- W4366290459 creator A5067398323 @default.
- W4366290459 creator A5069360015 @default.
- W4366290459 creator A5069434087 @default.
- W4366290459 creator A5072348567 @default.
- W4366290459 creator A5073081693 @default.
- W4366290459 creator A5073516444 @default.
- W4366290459 creator A5076223576 @default.
- W4366290459 creator A5076287743 @default.
- W4366290459 creator A5076819631 @default.
- W4366290459 creator A5078108723 @default.
- W4366290459 creator A5080039825 @default.
- W4366290459 creator A5081739108 @default.
- W4366290459 creator A5082916402 @default.
- W4366290459 creator A5086607658 @default.
- W4366290459 creator A5087072184 @default.
- W4366290459 creator A5090061879 @default.
- W4366290459 creator A5090319848 @default.
- W4366290459 date "2023-04-17" @default.
- W4366290459 modified "2023-10-16" @default.
- W4366290459 title "Pulmonary Hypertension Classification using Artificial Intelligence and Chest X-Ray:ATA AI STUDY-1" @default.
- W4366290459 cites W195150910 @default.
- W4366290459 cites W2004299531 @default.
- W4366290459 cites W2029407603 @default.
- W4366290459 cites W2074688428 @default.
- W4366290459 cites W2123679438 @default.
- W4366290459 cites W2194775991 @default.
- W4366290459 cites W2214114641 @default.
- W4366290459 cites W2328176404 @default.
- W4366290459 cites W2510686683 @default.
- W4366290459 cites W2531409750 @default.
- W4366290459 cites W2570343428 @default.
- W4366290459 cites W2618530766 @default.
- W4366290459 cites W2896287590 @default.
- W4366290459 cites W2901226889 @default.
- W4366290459 cites W2904280618 @default.
- W4366290459 cites W2919115771 @default.
- W4366290459 cites W2921318311 @default.
- W4366290459 cites W2946050503 @default.
- W4366290459 cites W2953767750 @default.
- W4366290459 cites W2955560504 @default.
- W4366290459 cites W2963163009 @default.
- W4366290459 cites W2999309192 @default.
- W4366290459 cites W3013277995 @default.
- W4366290459 cites W3022172938 @default.
- W4366290459 cites W3135057764 @default.
- W4366290459 cites W54564318 @default.
- W4366290459 cites W64111201 @default.
- W4366290459 doi "https://doi.org/10.1101/2023.04.14.23288561" @default.
- W4366290459 hasPublicationYear "2023" @default.
- W4366290459 type Work @default.
- W4366290459 citedByCount "0" @default.
- W4366290459 crossrefType "posted-content" @default.
- W4366290459 hasAuthorship W4366290459A5000322801 @default.
- W4366290459 hasAuthorship W4366290459A5001360069 @default.