Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366308826> ?p ?o ?g. }
- W4366308826 endingPage "117" @default.
- W4366308826 startingPage "105" @default.
- W4366308826 abstract "The mining conveyor belt is an imperative component of the mine industry which serves the crucial role of transporting materials. Predicament such as conveyor belt cracks has to be avoided, because any potential cause of conveyor belt failure constitutes risk of fatalities and significant economic implications. Hence, a new crack detection method is developed which can duly alert prior to any inception of failure. The research incorporates an interdigital capacitor (IC) based Ultra High Frequency (UHF) radio frequency identification (RFID) tag as sensor and Machine Learning (ML) to monitor the formation of cracks. This is done by collecting data from the UHF sensor when it is placed on a conveyor belt. Two states of the conveyor belt are investigated -stationary and a travelling belt moving at speeds between 1-5 m/s. For the case of motion, it is successfully replicated with the help of an electrical treadmill. By using ML integration, the outcomes will be more effective in tracking crack features. The model is tested with different types of inputs, followed by classification based on experimental data. This method results in a very accurate determination of cracks, crack orientation and width. The experimental model is 97.2% accurate in identifying the presence of cracks and 93.9% accurate in detecting their orientation; it can also determine half a millimetre-wide crack width with 97% of accuracy. This detection system is extremely accurate, even when there is movement. The achieved detection rate of 99.4% depicts the effectiveness of the model performance by successfully combating the interferences caused by motion. This research is intended to be a stepping stone towards an efficient remote health monitoring (HM) system suitable for the smart future." @default.
- W4366308826 created "2023-04-20" @default.
- W4366308826 creator A5037773915 @default.
- W4366308826 creator A5049646213 @default.
- W4366308826 creator A5054140431 @default.
- W4366308826 creator A5070630767 @default.
- W4366308826 creator A5075965637 @default.
- W4366308826 date "2023-01-01" @default.
- W4366308826 modified "2023-09-26" @default.
- W4366308826 title "Machine Learning Approach to RFID Enabled Health Monitoring of Coal Mine Conveyor Belt" @default.
- W4366308826 cites W1643475619 @default.
- W4366308826 cites W1977808060 @default.
- W4366308826 cites W2002716551 @default.
- W4366308826 cites W2064318715 @default.
- W4366308826 cites W2083513488 @default.
- W4366308826 cites W2086908048 @default.
- W4366308826 cites W2091626745 @default.
- W4366308826 cites W2092946214 @default.
- W4366308826 cites W2141557710 @default.
- W4366308826 cites W2154805199 @default.
- W4366308826 cites W2397349486 @default.
- W4366308826 cites W2604817211 @default.
- W4366308826 cites W2768197753 @default.
- W4366308826 cites W2791130211 @default.
- W4366308826 cites W2795983020 @default.
- W4366308826 cites W2801620960 @default.
- W4366308826 cites W2911046693 @default.
- W4366308826 cites W2913029471 @default.
- W4366308826 cites W2919816425 @default.
- W4366308826 cites W3045530378 @default.
- W4366308826 cites W3048498500 @default.
- W4366308826 cites W3094109421 @default.
- W4366308826 cites W3096975213 @default.
- W4366308826 cites W3136844617 @default.
- W4366308826 cites W3146092178 @default.
- W4366308826 cites W37018364 @default.
- W4366308826 cites W4224993680 @default.
- W4366308826 cites W4225982227 @default.
- W4366308826 cites W4247136649 @default.
- W4366308826 cites W4281252324 @default.
- W4366308826 cites W4309310684 @default.
- W4366308826 cites W2001641570 @default.
- W4366308826 doi "https://doi.org/10.1109/jrfid.2023.3267361" @default.
- W4366308826 hasPublicationYear "2023" @default.
- W4366308826 type Work @default.
- W4366308826 citedByCount "0" @default.
- W4366308826 crossrefType "journal-article" @default.
- W4366308826 hasAuthorship W4366308826A5037773915 @default.
- W4366308826 hasAuthorship W4366308826A5049646213 @default.
- W4366308826 hasAuthorship W4366308826A5054140431 @default.
- W4366308826 hasAuthorship W4366308826A5070630767 @default.
- W4366308826 hasAuthorship W4366308826A5075965637 @default.
- W4366308826 hasConcept C108615695 @default.
- W4366308826 hasConcept C116834253 @default.
- W4366308826 hasConcept C127413603 @default.
- W4366308826 hasConcept C15744967 @default.
- W4366308826 hasConcept C16345878 @default.
- W4366308826 hasConcept C16674752 @default.
- W4366308826 hasConcept C171146098 @default.
- W4366308826 hasConcept C19417346 @default.
- W4366308826 hasConcept C204222849 @default.
- W4366308826 hasConcept C2524010 @default.
- W4366308826 hasConcept C2775936607 @default.
- W4366308826 hasConcept C2777709985 @default.
- W4366308826 hasConcept C33923547 @default.
- W4366308826 hasConcept C38652104 @default.
- W4366308826 hasConcept C41008148 @default.
- W4366308826 hasConcept C518851703 @default.
- W4366308826 hasConcept C548081761 @default.
- W4366308826 hasConcept C59822182 @default.
- W4366308826 hasConcept C76155785 @default.
- W4366308826 hasConcept C78519656 @default.
- W4366308826 hasConcept C86803240 @default.
- W4366308826 hasConcept C96122199 @default.
- W4366308826 hasConceptScore W4366308826C108615695 @default.
- W4366308826 hasConceptScore W4366308826C116834253 @default.
- W4366308826 hasConceptScore W4366308826C127413603 @default.
- W4366308826 hasConceptScore W4366308826C15744967 @default.
- W4366308826 hasConceptScore W4366308826C16345878 @default.
- W4366308826 hasConceptScore W4366308826C16674752 @default.
- W4366308826 hasConceptScore W4366308826C171146098 @default.
- W4366308826 hasConceptScore W4366308826C19417346 @default.
- W4366308826 hasConceptScore W4366308826C204222849 @default.
- W4366308826 hasConceptScore W4366308826C2524010 @default.
- W4366308826 hasConceptScore W4366308826C2775936607 @default.
- W4366308826 hasConceptScore W4366308826C2777709985 @default.
- W4366308826 hasConceptScore W4366308826C33923547 @default.
- W4366308826 hasConceptScore W4366308826C38652104 @default.
- W4366308826 hasConceptScore W4366308826C41008148 @default.
- W4366308826 hasConceptScore W4366308826C518851703 @default.
- W4366308826 hasConceptScore W4366308826C548081761 @default.
- W4366308826 hasConceptScore W4366308826C59822182 @default.
- W4366308826 hasConceptScore W4366308826C76155785 @default.
- W4366308826 hasConceptScore W4366308826C78519656 @default.
- W4366308826 hasConceptScore W4366308826C86803240 @default.
- W4366308826 hasConceptScore W4366308826C96122199 @default.
- W4366308826 hasFunder F4320315885 @default.
- W4366308826 hasFunder F4320320522 @default.