Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366316250> ?p ?o ?g. }
- W4366316250 endingPage "e45991" @default.
- W4366316250 startingPage "e45991" @default.
- W4366316250 abstract "Lack of quantifiable biomarkers is a major obstacle in diagnosing and treating depression. In adolescents, increasing suicidality during antidepressant treatment further complicates the problem.We sought to evaluate digital biomarkers for the diagnosis and treatment response of depression in adolescents through a newly developed smartphone app.We developed the Smart Healthcare System for Teens At Risk for Depression and Suicide app for Android-based smartphones. This app passively collected data reflecting the social and behavioral activities of adolescents, such as their smartphone usage time, physical movement distance, and the number of phone calls and text messages during the study period. Our study consisted of 24 adolescents (mean age 15.4 [SD 1.4] years, 17 girls) with major depressive disorder (MDD) diagnosed with Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version and 10 healthy controls (mean age 13.8 [SD 0.6] years, 5 girls). After 1 week's baseline data collection, adolescents with MDD were treated with escitalopram in an 8-week, open-label trial. Participants were monitored for 5 weeks, including the baseline data collection period. Their psychiatric status was measured every week. Depression severity was measured using the Children's Depression Rating Scale-Revised and Clinical Global Impressions-Severity. The Columbia Suicide Severity Rating Scale was administered in order to assess suicide severity. We applied the deep learning approach for the analysis of the data. Deep neural network was employed for diagnosis classification, and neural network with weighted fuzzy membership functions was used for feature selection.We could predict the diagnosis of depression with training accuracy of 96.3% and 3-fold validation accuracy of 77%. Of the 24 adolescents with MDD, 10 responded to antidepressant treatments. We predicted the treatment response of adolescents with MDD with training accuracy of 94.2% and 3-fold validation accuracy of 76%. Adolescents with MDD tended to move longer distances and use smartphones for longer periods of time compared to controls. The deep learning analysis showed that smartphone usage time was the most important feature in distinguishing adolescents with MDD from controls. Prominent differences were not observed in the pattern of each feature between the treatment responders and nonresponders. The deep learning analysis revealed that the total length of calls received as the most important feature predicting antidepressant response in adolescents with MDD.Our smartphone app demonstrated preliminary evidence of predicting diagnosis and treatment response in depressed adolescents. This is the first study to predict the treatment response of adolescents with MDD by examining smartphone-based objective data with deep learning approaches." @default.
- W4366316250 created "2023-04-20" @default.
- W4366316250 creator A5002627864 @default.
- W4366316250 creator A5015685875 @default.
- W4366316250 creator A5021890683 @default.
- W4366316250 creator A5044553288 @default.
- W4366316250 creator A5051015778 @default.
- W4366316250 creator A5053186784 @default.
- W4366316250 creator A5059692607 @default.
- W4366316250 creator A5059722141 @default.
- W4366316250 creator A5081429171 @default.
- W4366316250 creator A5082792278 @default.
- W4366316250 creator A5089419349 @default.
- W4366316250 date "2023-05-24" @default.
- W4366316250 modified "2023-09-30" @default.
- W4366316250 title "Prediction of Diagnosis and Treatment Response in Adolescents With Depression by Using a Smartphone App and Deep Learning Approaches: Usability Study" @default.
- W4366316250 cites W1522850626 @default.
- W4366316250 cites W1969020273 @default.
- W4366316250 cites W1983302342 @default.
- W4366316250 cites W1991056345 @default.
- W4366316250 cites W2007022499 @default.
- W4366316250 cites W2012844277 @default.
- W4366316250 cites W2041190611 @default.
- W4366316250 cites W2044740696 @default.
- W4366316250 cites W2051068903 @default.
- W4366316250 cites W2054468429 @default.
- W4366316250 cites W2068096833 @default.
- W4366316250 cites W2074020937 @default.
- W4366316250 cites W2114776324 @default.
- W4366316250 cites W2117971251 @default.
- W4366316250 cites W2118826874 @default.
- W4366316250 cites W2120237358 @default.
- W4366316250 cites W2132747405 @default.
- W4366316250 cites W2148083007 @default.
- W4366316250 cites W2148233075 @default.
- W4366316250 cites W2159895219 @default.
- W4366316250 cites W2312558038 @default.
- W4366316250 cites W2549789155 @default.
- W4366316250 cites W2576414606 @default.
- W4366316250 cites W2737034073 @default.
- W4366316250 cites W2745274215 @default.
- W4366316250 cites W2805419645 @default.
- W4366316250 cites W2807780860 @default.
- W4366316250 cites W2809197773 @default.
- W4366316250 cites W2809351553 @default.
- W4366316250 cites W2887144057 @default.
- W4366316250 cites W2898980145 @default.
- W4366316250 cites W2909091936 @default.
- W4366316250 cites W2914765137 @default.
- W4366316250 cites W2919115771 @default.
- W4366316250 cites W2975975413 @default.
- W4366316250 cites W2979409724 @default.
- W4366316250 cites W2981679558 @default.
- W4366316250 cites W2982093611 @default.
- W4366316250 cites W2984702021 @default.
- W4366316250 cites W2985449889 @default.
- W4366316250 cites W2999557233 @default.
- W4366316250 cites W3005436344 @default.
- W4366316250 cites W3012937215 @default.
- W4366316250 cites W3046493323 @default.
- W4366316250 cites W3081213963 @default.
- W4366316250 cites W3083809246 @default.
- W4366316250 cites W3106107172 @default.
- W4366316250 cites W752580865 @default.
- W4366316250 doi "https://doi.org/10.2196/45991" @default.
- W4366316250 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37223978" @default.
- W4366316250 hasPublicationYear "2023" @default.
- W4366316250 type Work @default.
- W4366316250 citedByCount "0" @default.
- W4366316250 crossrefType "journal-article" @default.
- W4366316250 hasAuthorship W4366316250A5002627864 @default.
- W4366316250 hasAuthorship W4366316250A5015685875 @default.
- W4366316250 hasAuthorship W4366316250A5021890683 @default.
- W4366316250 hasAuthorship W4366316250A5044553288 @default.
- W4366316250 hasAuthorship W4366316250A5051015778 @default.
- W4366316250 hasAuthorship W4366316250A5053186784 @default.
- W4366316250 hasAuthorship W4366316250A5059692607 @default.
- W4366316250 hasAuthorship W4366316250A5059722141 @default.
- W4366316250 hasAuthorship W4366316250A5081429171 @default.
- W4366316250 hasAuthorship W4366316250A5082792278 @default.
- W4366316250 hasAuthorship W4366316250A5089419349 @default.
- W4366316250 hasBestOaLocation W43663162501 @default.
- W4366316250 hasConcept C118552586 @default.
- W4366316250 hasConcept C138496976 @default.
- W4366316250 hasConcept C139719470 @default.
- W4366316250 hasConcept C15744967 @default.
- W4366316250 hasConcept C162324750 @default.
- W4366316250 hasConcept C2776867660 @default.
- W4366316250 hasConcept C2779177272 @default.
- W4366316250 hasConcept C2779583969 @default.
- W4366316250 hasConcept C2780051608 @default.
- W4366316250 hasConcept C2780733359 @default.
- W4366316250 hasConcept C558461103 @default.
- W4366316250 hasConcept C70410870 @default.
- W4366316250 hasConcept C71924100 @default.
- W4366316250 hasConcept C83849319 @default.
- W4366316250 hasConceptScore W4366316250C118552586 @default.
- W4366316250 hasConceptScore W4366316250C138496976 @default.