Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366332052> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4366332052 endingPage "8" @default.
- W4366332052 startingPage "1" @default.
- W4366332052 abstract "The advancement of AI technology has promoted the development speed of digital multimedia and brought a new experience to the digital media experience effect. In this paper, we aim to using artificial intelligence methods to enhance the digital media design experience. Specifically, we propose a method for low-light image enhancement using generative adversarial networks as a model framework. To better solve the problem, we design the following strategies in our proposed method. First, we preprocess the images into patches with a proper size. Second, we introduce the overall network structure of GAN. Third, we designed a multifeature extraction module with different sizes of convolution kernels to enhance the model’s ability for extracting features. Fourth, we propose a loss that combines the mean square error distance function with the adversarial error function to enable the model to learn the distributional features of the image. Finally, we verify the effectiveness of the proposed method on two datasets, namely, PASCAL VOC and MIT-Adobe FiveK. The results show that our proposed method performs well in the process of evaluation." @default.
- W4366332052 created "2023-04-20" @default.
- W4366332052 creator A5000352901 @default.
- W4366332052 date "2023-04-18" @default.
- W4366332052 modified "2023-09-26" @default.
- W4366332052 title "Artificial Intelligence-Based Digital Media Design Effect Enhancement Mechanism" @default.
- W4366332052 cites W1529533443 @default.
- W4366332052 cites W1920280450 @default.
- W4366332052 cites W1994278693 @default.
- W4366332052 cites W2064652801 @default.
- W4366332052 cites W2083780116 @default.
- W4366332052 cites W2115414542 @default.
- W4366332052 cites W2121652604 @default.
- W4366332052 cites W2171369032 @default.
- W4366332052 cites W2423124209 @default.
- W4366332052 cites W2566376500 @default.
- W4366332052 cites W2624147939 @default.
- W4366332052 cites W2735974062 @default.
- W4366332052 cites W2748902594 @default.
- W4366332052 cites W2765811365 @default.
- W4366332052 cites W2887066107 @default.
- W4366332052 cites W2891914549 @default.
- W4366332052 cites W2957962367 @default.
- W4366332052 cites W2990082040 @default.
- W4366332052 cites W2990551193 @default.
- W4366332052 cites W3034283122 @default.
- W4366332052 cites W3156069248 @default.
- W4366332052 cites W4250006592 @default.
- W4366332052 doi "https://doi.org/10.1155/2023/8600543" @default.
- W4366332052 hasPublicationYear "2023" @default.
- W4366332052 type Work @default.
- W4366332052 citedByCount "0" @default.
- W4366332052 crossrefType "journal-article" @default.
- W4366332052 hasAuthorship W4366332052A5000352901 @default.
- W4366332052 hasBestOaLocation W43663320521 @default.
- W4366332052 hasConcept C105795698 @default.
- W4366332052 hasConcept C108583219 @default.
- W4366332052 hasConcept C115961682 @default.
- W4366332052 hasConcept C119857082 @default.
- W4366332052 hasConcept C139945424 @default.
- W4366332052 hasConcept C154945302 @default.
- W4366332052 hasConcept C199360897 @default.
- W4366332052 hasConcept C31972630 @default.
- W4366332052 hasConcept C33923547 @default.
- W4366332052 hasConcept C41008148 @default.
- W4366332052 hasConcept C42781572 @default.
- W4366332052 hasConcept C75608658 @default.
- W4366332052 hasConcept C9417928 @default.
- W4366332052 hasConceptScore W4366332052C105795698 @default.
- W4366332052 hasConceptScore W4366332052C108583219 @default.
- W4366332052 hasConceptScore W4366332052C115961682 @default.
- W4366332052 hasConceptScore W4366332052C119857082 @default.
- W4366332052 hasConceptScore W4366332052C139945424 @default.
- W4366332052 hasConceptScore W4366332052C154945302 @default.
- W4366332052 hasConceptScore W4366332052C199360897 @default.
- W4366332052 hasConceptScore W4366332052C31972630 @default.
- W4366332052 hasConceptScore W4366332052C33923547 @default.
- W4366332052 hasConceptScore W4366332052C41008148 @default.
- W4366332052 hasConceptScore W4366332052C42781572 @default.
- W4366332052 hasConceptScore W4366332052C75608658 @default.
- W4366332052 hasConceptScore W4366332052C9417928 @default.
- W4366332052 hasLocation W43663320521 @default.
- W4366332052 hasOpenAccess W4366332052 @default.
- W4366332052 hasPrimaryLocation W43663320521 @default.
- W4366332052 hasRelatedWork W2995227436 @default.
- W4366332052 hasRelatedWork W3014300295 @default.
- W4366332052 hasRelatedWork W3164822677 @default.
- W4366332052 hasRelatedWork W4223943233 @default.
- W4366332052 hasRelatedWork W4225161397 @default.
- W4366332052 hasRelatedWork W4250304930 @default.
- W4366332052 hasRelatedWork W4309045103 @default.
- W4366332052 hasRelatedWork W4312200629 @default.
- W4366332052 hasRelatedWork W4360585206 @default.
- W4366332052 hasRelatedWork W4364306694 @default.
- W4366332052 hasVolume "2023" @default.
- W4366332052 isParatext "false" @default.
- W4366332052 isRetracted "false" @default.
- W4366332052 workType "article" @default.