Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366332054> ?p ?o ?g. }
- W4366332054 endingPage "2338" @default.
- W4366332054 startingPage "2321" @default.
- W4366332054 abstract "The urgent need for SARS-CoV-2 controls has led to a reassessment of approaches to identify and develop natural product inhibitors of zoonotic, highly virulent, and rapidly emerging viruses. There are yet no clinically approved broad-spectrum antivirals available for beta-coronaviruses. Discovery pipelines for pan-virus medications against a broad range of betacoronaviruses are therefore a priority. A variety of marine natural product (MNP) small molecules have shown inhibitory activity against viral species. Access to large data caches of small molecule structural information is vital to finding new pharmaceuticals. Increasingly, molecular docking simulations are being used to narrow the space of possibilities and generate drug leads. Combining in-silico methods, augmented by metaheuristic optimization and machine learning (ML) allows the generation of hits from within a virtual MNP library to narrow screens for novel targets against coronaviruses. In this review article, we explore current insights and techniques that can be leveraged to generate broad-spectrum antivirals against betacoronaviruses using in-silico optimization and ML. ML approaches are capable of simultaneously evaluating different features for predicting inhibitory activity. Many also provide a semi-quantitative measure of feature relevance and can guide in selecting a subset of features relevant for inhibition of SARS-CoV-2." @default.
- W4366332054 created "2023-04-20" @default.
- W4366332054 creator A5002010517 @default.
- W4366332054 creator A5012768447 @default.
- W4366332054 creator A5016505833 @default.
- W4366332054 creator A5029479595 @default.
- W4366332054 creator A5029712826 @default.
- W4366332054 creator A5046462717 @default.
- W4366332054 creator A5047407829 @default.
- W4366332054 creator A5053659921 @default.
- W4366332054 creator A5066691242 @default.
- W4366332054 creator A5072603426 @default.
- W4366332054 creator A5084705544 @default.
- W4366332054 date "2023-04-01" @default.
- W4366332054 modified "2023-10-01" @default.
- W4366332054 title "In-Silico Approaches for the Screening and Discovery of Broad-Spectrum Marine Natural Product Antiviral Agents Against Coronaviruses" @default.
- W4366332054 cites W1235673195 @default.
- W4366332054 cites W1968816006 @default.
- W4366332054 cites W1976892175 @default.
- W4366332054 cites W1992215820 @default.
- W4366332054 cites W2006019492 @default.
- W4366332054 cites W2019716850 @default.
- W4366332054 cites W2031441006 @default.
- W4366332054 cites W2033795441 @default.
- W4366332054 cites W2039574315 @default.
- W4366332054 cites W2040405602 @default.
- W4366332054 cites W2043855224 @default.
- W4366332054 cites W2046148718 @default.
- W4366332054 cites W2050456292 @default.
- W4366332054 cites W2066150117 @default.
- W4366332054 cites W2074920600 @default.
- W4366332054 cites W2118966975 @default.
- W4366332054 cites W2125496588 @default.
- W4366332054 cites W2138997437 @default.
- W4366332054 cites W2145682943 @default.
- W4366332054 cites W2151591509 @default.
- W4366332054 cites W2176516200 @default.
- W4366332054 cites W2312967384 @default.
- W4366332054 cites W2558999090 @default.
- W4366332054 cites W2594183968 @default.
- W4366332054 cites W2762631622 @default.
- W4366332054 cites W2767891136 @default.
- W4366332054 cites W2781821160 @default.
- W4366332054 cites W2793110908 @default.
- W4366332054 cites W2794875394 @default.
- W4366332054 cites W2801991413 @default.
- W4366332054 cites W2826750344 @default.
- W4366332054 cites W2886544065 @default.
- W4366332054 cites W2901942917 @default.
- W4366332054 cites W2905012389 @default.
- W4366332054 cites W2910974671 @default.
- W4366332054 cites W2912171584 @default.
- W4366332054 cites W2919115771 @default.
- W4366332054 cites W2922240848 @default.
- W4366332054 cites W2937307539 @default.
- W4366332054 cites W2958032705 @default.
- W4366332054 cites W2972485984 @default.
- W4366332054 cites W2990351990 @default.
- W4366332054 cites W2991012415 @default.
- W4366332054 cites W2996392868 @default.
- W4366332054 cites W2998620327 @default.
- W4366332054 cites W3001618351 @default.
- W4366332054 cites W3003009827 @default.
- W4366332054 cites W3005417975 @default.
- W4366332054 cites W3008142620 @default.
- W4366332054 cites W3009678818 @default.
- W4366332054 cites W3014067025 @default.
- W4366332054 cites W3015429854 @default.
- W4366332054 cites W3017680297 @default.
- W4366332054 cites W3023594261 @default.
- W4366332054 cites W3037776143 @default.
- W4366332054 cites W3045130610 @default.
- W4366332054 cites W3045600629 @default.
- W4366332054 cites W3045750139 @default.
- W4366332054 cites W3082246640 @default.
- W4366332054 cites W3087156149 @default.
- W4366332054 cites W3089574919 @default.
- W4366332054 cites W3091955191 @default.
- W4366332054 cites W3092140113 @default.
- W4366332054 cites W3106310231 @default.
- W4366332054 cites W3108130218 @default.
- W4366332054 cites W3109221674 @default.
- W4366332054 cites W3111340192 @default.
- W4366332054 cites W3118695441 @default.
- W4366332054 cites W3122198537 @default.
- W4366332054 cites W3131809164 @default.
- W4366332054 cites W3143964243 @default.
- W4366332054 cites W3152451364 @default.
- W4366332054 cites W3156220327 @default.
- W4366332054 cites W3173623385 @default.
- W4366332054 cites W3197910789 @default.
- W4366332054 cites W3200075100 @default.
- W4366332054 cites W3206553649 @default.
- W4366332054 cites W3206746498 @default.
- W4366332054 cites W3207741531 @default.
- W4366332054 cites W3210498507 @default.
- W4366332054 cites W3214345387 @default.
- W4366332054 cites W4206175653 @default.