Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366333085> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4366333085 endingPage "182" @default.
- W4366333085 startingPage "175" @default.
- W4366333085 abstract "Due to the obvious advancement of artificial intelligence, keyword spotting has become a fast-growing technology that was first launched a few years ago by hidden Markov models. Keyword spotting is the technique of finding terms that have been pre-programmed into a machine learning model. However, because the keyword spotting system model will be installed on a small and resource-constrained device, it must be minimal in size. It is difficult to maintain accuracy and performance when minimizing the model size. We suggested in this paper to develop a TinyML model that responds to voice commands by detecting words that are utilized in a cascade architecture to start or control a program. The keyword detection machine learning model was built, trained, and tested using the edge impulse development platform. The technique follows the model-building workflow, which includes data collection, preprocessing, training, testing, and deployment. 'On,' 'Off,' noise, and unknown databases were obtained from the Google speech command database V1 and applied for training and testing. The MFCC was used to extract features and CNN was used to generate the model, which was then optimized and deployed on the microcontroller. The model's evaluation represents an accuracy of 84.51% based on the datasets. Finally, the KWS was successfully implemented and assessed on Arduino Nano 33 BLE Sense for two studies in terms of accuracy at three different times and by six different persons." @default.
- W4366333085 created "2023-04-20" @default.
- W4366333085 creator A5020601617 @default.
- W4366333085 creator A5037942360 @default.
- W4366333085 date "2023-04-19" @default.
- W4366333085 modified "2023-09-30" @default.
- W4366333085 title "KEYWORD SPOTTING SYSTEM WITH NANO 33 BLE SENSE USING EMBEDDED MACHINE LEARNING APPROACH" @default.
- W4366333085 doi "https://doi.org/10.11113/jurnalteknologi.v85.18744" @default.
- W4366333085 hasPublicationYear "2023" @default.
- W4366333085 type Work @default.
- W4366333085 citedByCount "0" @default.
- W4366333085 crossrefType "journal-article" @default.
- W4366333085 hasAuthorship W4366333085A5020601617 @default.
- W4366333085 hasAuthorship W4366333085A5037942360 @default.
- W4366333085 hasBestOaLocation W43663330851 @default.
- W4366333085 hasConcept C119857082 @default.
- W4366333085 hasConcept C154945302 @default.
- W4366333085 hasConcept C177212765 @default.
- W4366333085 hasConcept C23224414 @default.
- W4366333085 hasConcept C2779506182 @default.
- W4366333085 hasConcept C2781213101 @default.
- W4366333085 hasConcept C28490314 @default.
- W4366333085 hasConcept C34736171 @default.
- W4366333085 hasConcept C41008148 @default.
- W4366333085 hasConcept C77088390 @default.
- W4366333085 hasConceptScore W4366333085C119857082 @default.
- W4366333085 hasConceptScore W4366333085C154945302 @default.
- W4366333085 hasConceptScore W4366333085C177212765 @default.
- W4366333085 hasConceptScore W4366333085C23224414 @default.
- W4366333085 hasConceptScore W4366333085C2779506182 @default.
- W4366333085 hasConceptScore W4366333085C2781213101 @default.
- W4366333085 hasConceptScore W4366333085C28490314 @default.
- W4366333085 hasConceptScore W4366333085C34736171 @default.
- W4366333085 hasConceptScore W4366333085C41008148 @default.
- W4366333085 hasConceptScore W4366333085C77088390 @default.
- W4366333085 hasIssue "3" @default.
- W4366333085 hasLocation W43663330851 @default.
- W4366333085 hasOpenAccess W4366333085 @default.
- W4366333085 hasPrimaryLocation W43663330851 @default.
- W4366333085 hasRelatedWork W1967145194 @default.
- W4366333085 hasRelatedWork W2019287799 @default.
- W4366333085 hasRelatedWork W2154003150 @default.
- W4366333085 hasRelatedWork W2171506966 @default.
- W4366333085 hasRelatedWork W2557179207 @default.
- W4366333085 hasRelatedWork W2559372442 @default.
- W4366333085 hasRelatedWork W2748717988 @default.
- W4366333085 hasRelatedWork W2967011229 @default.
- W4366333085 hasRelatedWork W3142087371 @default.
- W4366333085 hasRelatedWork W4300154353 @default.
- W4366333085 hasVolume "85" @default.
- W4366333085 isParatext "false" @default.
- W4366333085 isRetracted "false" @default.
- W4366333085 workType "article" @default.