Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366335632> ?p ?o ?g. }
- W4366335632 endingPage "e067899" @default.
- W4366335632 startingPage "e067899" @default.
- W4366335632 abstract "Hypoglycaemia is a harmful potential complication in people with type 1 diabetes mellitus (T1DM) and can be exacerbated in patients receiving treatment, such as insulin therapies, by the very interventions aiming to achieve optimal blood glucose levels. Symptoms can vary greatly, including, but not limited to, trembling, palpitations, sweating, dry mouth, confusion, seizures, coma, brain damage or even death if untreated. A pilot study with healthy (euglycaemic) participants previously demonstrated that hypoglycaemia can be detected non-invasively with artificial intelligence (AI) using physiological signals obtained from wearable sensors. This protocol provides a methodological description of an observational study for obtaining physiological data from people with T1DM. The aim of this work is to further improve the previously developed AI model and validate its performance for glycaemic event detection in people with T1DM. Such a model could be suitable for integrating into a continuous, non-invasive, glucose monitoring system, contributing towards improving surveillance and management of blood glucose for people with diabetes.This observational study aims to recruit 30 patients with T1DM from a diabetes outpatient clinic at the University Hospital Coventry and Warwickshire for a two-phase study. The first phase involves attending an inpatient protocol for up to 36 hours in a calorimetry room under controlled conditions, followed by a phase of free-living, for up to 3 days, in which participants will go about their normal daily activities unrestricted. Throughout the study, the participants will wear wearable sensors to measure and record physiological signals (eg, ECG and continuous glucose monitor). Data collected will be used to develop and validate an AI model using state-of-the-art deep learning methods.This study has received ethical approval from National Research Ethics Service (ref: 17/NW/0277). The findings will be disseminated via peer-reviewed journals and presented at scientific conferences.NCT05461144." @default.
- W4366335632 created "2023-04-20" @default.
- W4366335632 creator A5013745632 @default.
- W4366335632 creator A5018234949 @default.
- W4366335632 creator A5021472133 @default.
- W4366335632 creator A5022989784 @default.
- W4366335632 creator A5027919996 @default.
- W4366335632 creator A5040684139 @default.
- W4366335632 creator A5054889019 @default.
- W4366335632 creator A5083798788 @default.
- W4366335632 date "2023-04-01" @default.
- W4366335632 modified "2023-10-06" @default.
- W4366335632 title "Development of an artificial intelligence system to identify hypoglycaemia via ECG in adults with type 1 diabetes: protocol for data collection under controlled and free-living conditions" @default.
- W4366335632 cites W1533127936 @default.
- W4366335632 cites W1849745725 @default.
- W4366335632 cites W1872244446 @default.
- W4366335632 cites W1969497301 @default.
- W4366335632 cites W2000834293 @default.
- W4366335632 cites W2012435382 @default.
- W4366335632 cites W2037385875 @default.
- W4366335632 cites W2043485791 @default.
- W4366335632 cites W2062573090 @default.
- W4366335632 cites W2064983750 @default.
- W4366335632 cites W2078178406 @default.
- W4366335632 cites W2092442280 @default.
- W4366335632 cites W2098705100 @default.
- W4366335632 cites W2107353084 @default.
- W4366335632 cites W2109416725 @default.
- W4366335632 cites W2134508273 @default.
- W4366335632 cites W2139893169 @default.
- W4366335632 cites W2140856321 @default.
- W4366335632 cites W2147595228 @default.
- W4366335632 cites W2147602249 @default.
- W4366335632 cites W2149347361 @default.
- W4366335632 cites W2157347901 @default.
- W4366335632 cites W2171853994 @default.
- W4366335632 cites W2190748907 @default.
- W4366335632 cites W2477374512 @default.
- W4366335632 cites W2481439829 @default.
- W4366335632 cites W2503954723 @default.
- W4366335632 cites W2597477321 @default.
- W4366335632 cites W2755750533 @default.
- W4366335632 cites W2759190050 @default.
- W4366335632 cites W2773568731 @default.
- W4366335632 cites W2964949378 @default.
- W4366335632 cites W2970630886 @default.
- W4366335632 cites W2977582011 @default.
- W4366335632 cites W2985707068 @default.
- W4366335632 cites W3000630830 @default.
- W4366335632 cites W3014961299 @default.
- W4366335632 cites W3021978052 @default.
- W4366335632 cites W3048144875 @default.
- W4366335632 cites W3081224875 @default.
- W4366335632 cites W3127637041 @default.
- W4366335632 cites W3137461132 @default.
- W4366335632 cites W3155557891 @default.
- W4366335632 cites W3179272827 @default.
- W4366335632 cites W3192723416 @default.
- W4366335632 cites W3194052602 @default.
- W4366335632 cites W3201628826 @default.
- W4366335632 cites W4200131616 @default.
- W4366335632 cites W4235203602 @default.
- W4366335632 cites W4252152986 @default.
- W4366335632 cites W4254695749 @default.
- W4366335632 cites W4312924492 @default.
- W4366335632 cites W4317787019 @default.
- W4366335632 cites W972738447 @default.
- W4366335632 doi "https://doi.org/10.1136/bmjopen-2022-067899" @default.
- W4366335632 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37072364" @default.
- W4366335632 hasPublicationYear "2023" @default.
- W4366335632 type Work @default.
- W4366335632 citedByCount "1" @default.
- W4366335632 countsByYear W43663356322023 @default.
- W4366335632 crossrefType "journal-article" @default.
- W4366335632 hasAuthorship W4366335632A5013745632 @default.
- W4366335632 hasAuthorship W4366335632A5018234949 @default.
- W4366335632 hasAuthorship W4366335632A5021472133 @default.
- W4366335632 hasAuthorship W4366335632A5022989784 @default.
- W4366335632 hasAuthorship W4366335632A5027919996 @default.
- W4366335632 hasAuthorship W4366335632A5040684139 @default.
- W4366335632 hasAuthorship W4366335632A5054889019 @default.
- W4366335632 hasAuthorship W4366335632A5083798788 @default.
- W4366335632 hasBestOaLocation W43663356321 @default.
- W4366335632 hasConcept C126322002 @default.
- W4366335632 hasConcept C134018914 @default.
- W4366335632 hasConcept C177713679 @default.
- W4366335632 hasConcept C194828623 @default.
- W4366335632 hasConcept C23131810 @default.
- W4366335632 hasConcept C2776403943 @default.
- W4366335632 hasConcept C2780668416 @default.
- W4366335632 hasConcept C2781232474 @default.
- W4366335632 hasConcept C545542383 @default.
- W4366335632 hasConcept C555293320 @default.
- W4366335632 hasConcept C71924100 @default.
- W4366335632 hasConceptScore W4366335632C126322002 @default.
- W4366335632 hasConceptScore W4366335632C134018914 @default.
- W4366335632 hasConceptScore W4366335632C177713679 @default.
- W4366335632 hasConceptScore W4366335632C194828623 @default.