Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366339694> ?p ?o ?g. }
- W4366339694 endingPage "13" @default.
- W4366339694 startingPage "1" @default.
- W4366339694 abstract "In coastal and port engineering, wind-generated waves have always been a crucial, fundamental, and important topic. As a result, various methods for estimating wave parameters, including field measurement and numerical methods, have been proposed over time. This study evaluates the wave height at Sri-Lanka Hambantota Port using soft computing models such as Artificial Neural Networks (ANNs) and the M5 model tree (M5MT). In order to overcome its nonstationarity, the primary wave height time series were divided into subtime series using the wavelet transform. The collected subtime series were then utilized as input data for ANN and M5MT in order to determine the wave height. For the sake of the model performance, the daily wind and wave data from the Acoustic Wave and Current (AWAC) sensor for Hambantota Port in 2020 and Sanmen Bay in 2017 were used in this study. The training state utilizes 80% of the available data, while the test state uses 20%. The Root Mean Square Error (RMSE) of the ANN, M5, WANN, and Wavelet-M5 models in the Hambantota Port for the test stage are 0.12, 0.11, 0.04, and 0.06, respectively. While in Sanmen Bay, the RMSE of the ANN, M5, WANN, and Wavelet-M5 models for the test stage are 0.14, 0.16, 0.06, and 0.08, respectively. According to the findings of this study, the accuracy of WANN and Wavelet-M5 hybrid models in evaluating wave height is superior to that of classic ANN and M5MT, and it is recommended that WANN and Wavelet-M5 hybrid models be used to estimate wave height." @default.
- W4366339694 created "2023-04-20" @default.
- W4366339694 creator A5011590914 @default.
- W4366339694 creator A5012997969 @default.
- W4366339694 creator A5037785884 @default.
- W4366339694 creator A5064525905 @default.
- W4366339694 creator A5075179385 @default.
- W4366339694 creator A5081123966 @default.
- W4366339694 creator A5091427982 @default.
- W4366339694 date "2023-04-18" @default.
- W4366339694 modified "2023-10-16" @default.
- W4366339694 title "Evaluation of Hybrid Soft Computing Model’s Performance in Estimating Wave Height" @default.
- W4366339694 cites W1852037277 @default.
- W4366339694 cites W2062015870 @default.
- W4366339694 cites W2179759512 @default.
- W4366339694 cites W2241420790 @default.
- W4366339694 cites W2528249405 @default.
- W4366339694 cites W2594574467 @default.
- W4366339694 cites W2737587394 @default.
- W4366339694 cites W2746499694 @default.
- W4366339694 cites W2765567773 @default.
- W4366339694 cites W2792789292 @default.
- W4366339694 cites W2807213788 @default.
- W4366339694 cites W2808995650 @default.
- W4366339694 cites W2891517610 @default.
- W4366339694 cites W2916584490 @default.
- W4366339694 cites W2918500418 @default.
- W4366339694 cites W2939881942 @default.
- W4366339694 cites W2955719009 @default.
- W4366339694 cites W2972153831 @default.
- W4366339694 cites W2979138223 @default.
- W4366339694 cites W2989877241 @default.
- W4366339694 cites W2991310006 @default.
- W4366339694 cites W2999209402 @default.
- W4366339694 cites W3009619394 @default.
- W4366339694 cites W3030572377 @default.
- W4366339694 cites W3035467416 @default.
- W4366339694 cites W3039320445 @default.
- W4366339694 cites W3044107449 @default.
- W4366339694 cites W3081540322 @default.
- W4366339694 cites W3109859723 @default.
- W4366339694 cites W3154245173 @default.
- W4366339694 cites W3157227012 @default.
- W4366339694 cites W3160843167 @default.
- W4366339694 cites W3166332121 @default.
- W4366339694 cites W3173533341 @default.
- W4366339694 cites W3194707064 @default.
- W4366339694 cites W3195295211 @default.
- W4366339694 cites W3196384719 @default.
- W4366339694 cites W4212866675 @default.
- W4366339694 cites W4229007172 @default.
- W4366339694 cites W4317485935 @default.
- W4366339694 doi "https://doi.org/10.1155/2023/8272566" @default.
- W4366339694 hasPublicationYear "2023" @default.
- W4366339694 type Work @default.
- W4366339694 citedByCount "1" @default.
- W4366339694 countsByYear W43663396942023 @default.
- W4366339694 crossrefType "journal-article" @default.
- W4366339694 hasAuthorship W4366339694A5011590914 @default.
- W4366339694 hasAuthorship W4366339694A5012997969 @default.
- W4366339694 hasAuthorship W4366339694A5037785884 @default.
- W4366339694 hasAuthorship W4366339694A5064525905 @default.
- W4366339694 hasAuthorship W4366339694A5075179385 @default.
- W4366339694 hasAuthorship W4366339694A5081123966 @default.
- W4366339694 hasAuthorship W4366339694A5091427982 @default.
- W4366339694 hasBestOaLocation W43663396941 @default.
- W4366339694 hasConcept C105795698 @default.
- W4366339694 hasConcept C111368507 @default.
- W4366339694 hasConcept C11413529 @default.
- W4366339694 hasConcept C127313418 @default.
- W4366339694 hasConcept C139945424 @default.
- W4366339694 hasConcept C140073362 @default.
- W4366339694 hasConcept C143724316 @default.
- W4366339694 hasConcept C151730666 @default.
- W4366339694 hasConcept C154945302 @default.
- W4366339694 hasConcept C165082838 @default.
- W4366339694 hasConcept C196216189 @default.
- W4366339694 hasConcept C33923547 @default.
- W4366339694 hasConcept C41008148 @default.
- W4366339694 hasConcept C47432892 @default.
- W4366339694 hasConcept C50644808 @default.
- W4366339694 hasConcept C70620910 @default.
- W4366339694 hasConcept C85910571 @default.
- W4366339694 hasConceptScore W4366339694C105795698 @default.
- W4366339694 hasConceptScore W4366339694C111368507 @default.
- W4366339694 hasConceptScore W4366339694C11413529 @default.
- W4366339694 hasConceptScore W4366339694C127313418 @default.
- W4366339694 hasConceptScore W4366339694C139945424 @default.
- W4366339694 hasConceptScore W4366339694C140073362 @default.
- W4366339694 hasConceptScore W4366339694C143724316 @default.
- W4366339694 hasConceptScore W4366339694C151730666 @default.
- W4366339694 hasConceptScore W4366339694C154945302 @default.
- W4366339694 hasConceptScore W4366339694C165082838 @default.
- W4366339694 hasConceptScore W4366339694C196216189 @default.
- W4366339694 hasConceptScore W4366339694C33923547 @default.
- W4366339694 hasConceptScore W4366339694C41008148 @default.
- W4366339694 hasConceptScore W4366339694C47432892 @default.
- W4366339694 hasConceptScore W4366339694C50644808 @default.