Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366351337> ?p ?o ?g. }
- W4366351337 abstract "Cholera has been a human scourge since the early 1800s and remains a global public health challenge, caused by the toxigenic strains of the bacterium Vibrio cholerae. In its aquatic reservoirs, V. cholerae has been shown to live in association with various arthropod hosts, including the chironomids, a diverse insect family commonly found in wet and semiwet habitats. The association between V. cholerae and chironomids may shield the bacterium from environmental stressors and amplify its dissemination. However, the interaction dynamics between V. cholerae and chironomids remain largely unknown. In this study, we developed freshwater microcosms with chironomid larvae to test the effects of cell density and strain on V. cholerae-chironomid interactions. Our results show that chironomid larvae can be exposed to V. cholerae up to a high inoculation dose (109 cells/mL) without observable detrimental effects. Meanwhile, interstrain variability in host invasion, including prevalence, bacterial load, and effects on host survival, was highly cell density-dependent. Microbiome analysis of the chironomid samples by 16S rRNA gene amplicon sequencing revealed a general effect of V. cholerae exposure on microbiome species evenness. Taken together, our results provide novel insights into V. cholerae invasion dynamics of the chironomid larvae with respect to various doses and strains. The findings suggest that aquatic cell density is a crucial driver of V. cholerae invasion success in chironomid larvae and pave the way for future work examining the effects of a broader dose range and environmental variables (e.g., temperature) on V. cholerae-chironomid interactions. IMPORTANCE Vibrio cholerae is the causative agent of cholera, a significant diarrheal disease affecting millions of people worldwide. Increasing evidence suggests that the environmental facets of the V. cholerae life cycle involve symbiotic associations with aquatic arthropods, which may facilitate its environmental persistence and dissemination. However, the dynamics of interactions between V. cholerae and aquatic arthropods remain unexplored. This study capitalized on using freshwater microcosms with chironomid larvae to investigate the effects of bacterial cell density and strain on V. cholerae-chironomid interactions. Our results suggest that aquatic cell density is the primary determinant of V. cholerae invasion success in chironomid larvae, while interstrain variability in invasion outcomes can be observed under specific cell density conditions. We also determined that V. cholerae exposure generally reduces species evenness of the chironomid-associated microbiome. Collectively, these findings provide novel insights into V. cholerae-arthropod interactions using a newly developed experimental host system." @default.
- W4366351337 created "2023-04-21" @default.
- W4366351337 creator A5022641660 @default.
- W4366351337 creator A5033907333 @default.
- W4366351337 creator A5053859959 @default.
- W4366351337 creator A5055762257 @default.
- W4366351337 creator A5073410010 @default.
- W4366351337 creator A5076753247 @default.
- W4366351337 date "2023-06-15" @default.
- W4366351337 modified "2023-10-06" @default.
- W4366351337 title "Vibrio cholerae Invasion Dynamics of the Chironomid Host Are Strongly Influenced by Aquatic Cell Density and Can Vary by Strain" @default.
- W4366351337 cites W1481326951 @default.
- W4366351337 cites W1541004148 @default.
- W4366351337 cites W1544896722 @default.
- W4366351337 cites W1869380658 @default.
- W4366351337 cites W1951724000 @default.
- W4366351337 cites W1965233000 @default.
- W4366351337 cites W1966148737 @default.
- W4366351337 cites W1972304471 @default.
- W4366351337 cites W1976550362 @default.
- W4366351337 cites W1988925586 @default.
- W4366351337 cites W1995431000 @default.
- W4366351337 cites W1999735001 @default.
- W4366351337 cites W2017782553 @default.
- W4366351337 cites W2018135533 @default.
- W4366351337 cites W2022515934 @default.
- W4366351337 cites W2029404175 @default.
- W4366351337 cites W2036168658 @default.
- W4366351337 cites W2048955235 @default.
- W4366351337 cites W2053489115 @default.
- W4366351337 cites W2056279562 @default.
- W4366351337 cites W2057508404 @default.
- W4366351337 cites W2063106548 @default.
- W4366351337 cites W2067459912 @default.
- W4366351337 cites W2075834838 @default.
- W4366351337 cites W2080001285 @default.
- W4366351337 cites W2081908643 @default.
- W4366351337 cites W2083528938 @default.
- W4366351337 cites W2087990093 @default.
- W4366351337 cites W2090418420 @default.
- W4366351337 cites W2091035589 @default.
- W4366351337 cites W2092296464 @default.
- W4366351337 cites W2096554564 @default.
- W4366351337 cites W2099557384 @default.
- W4366351337 cites W2102789355 @default.
- W4366351337 cites W2109545699 @default.
- W4366351337 cites W2116182124 @default.
- W4366351337 cites W2136420579 @default.
- W4366351337 cites W2142941796 @default.
- W4366351337 cites W2151051951 @default.
- W4366351337 cites W2157547080 @default.
- W4366351337 cites W2164485511 @default.
- W4366351337 cites W2166616050 @default.
- W4366351337 cites W2401404581 @default.
- W4366351337 cites W2591680228 @default.
- W4366351337 cites W2593864070 @default.
- W4366351337 cites W2604977417 @default.
- W4366351337 cites W2629569754 @default.
- W4366351337 cites W2769953400 @default.
- W4366351337 cites W2790714029 @default.
- W4366351337 cites W2794609412 @default.
- W4366351337 cites W2795474874 @default.
- W4366351337 cites W2799532592 @default.
- W4366351337 cites W2799902886 @default.
- W4366351337 cites W2884853933 @default.
- W4366351337 cites W2905242328 @default.
- W4366351337 cites W2936116945 @default.
- W4366351337 cites W2942903474 @default.
- W4366351337 cites W2948209209 @default.
- W4366351337 cites W2950580825 @default.
- W4366351337 cites W2963276645 @default.
- W4366351337 cites W2969260786 @default.
- W4366351337 cites W2976943244 @default.
- W4366351337 cites W3009833866 @default.
- W4366351337 cites W3011833263 @default.
- W4366351337 cites W3013925160 @default.
- W4366351337 cites W3034712727 @default.
- W4366351337 cites W3038234870 @default.
- W4366351337 cites W3048676879 @default.
- W4366351337 cites W3114472947 @default.
- W4366351337 cites W3137621026 @default.
- W4366351337 cites W3152900025 @default.
- W4366351337 cites W3152999467 @default.
- W4366351337 cites W3163956264 @default.
- W4366351337 cites W3178202552 @default.
- W4366351337 cites W3185097302 @default.
- W4366351337 cites W3209319357 @default.
- W4366351337 cites W3209327313 @default.
- W4366351337 cites W3216615039 @default.
- W4366351337 cites W4221083920 @default.
- W4366351337 cites W4226114275 @default.
- W4366351337 cites W4251038391 @default.
- W4366351337 cites W4283721142 @default.
- W4366351337 cites W4292716507 @default.
- W4366351337 cites W4298142583 @default.
- W4366351337 cites W4300247281 @default.
- W4366351337 cites W578603601 @default.
- W4366351337 doi "https://doi.org/10.1128/spectrum.02652-22" @default.
- W4366351337 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37074192" @default.
- W4366351337 hasPublicationYear "2023" @default.