Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366351340> ?p ?o ?g. }
- W4366351340 abstract "Background Wave gradient encoding can adequately utilize coil sensitivity profiles to facilitate higher accelerations in parallel magnetic resonance imaging (pMRI). However, there are limitations in mainstream pMRI and a few deep learning (DL) methods for recovering missing data under wave encoding framework: the former is prone to introduce errors from the auto-calibration signals (ACS) signal acquisition and is time-consuming, while the latter requires a large amount of training data. Purpose To tackle the above issues, an untrained neural network (UNN) model incorporating wave-encoded physical properties and deep generative model, named WDGM, was proposed with additional ACS- and training data-free. Methods Generally, the proposed method can provide powerful missing data interpolation capability using the wave physical encoding framework and designed UNN to characterize the MR image (k-space data) priors. Specifically, the MRI reconstruction combining physical wave encoding and elaborate UNN is modeled as a generalized minimization problem. The designation of UNN is driven by the coil sensitivity maps (CSM) smoothness and k-space linear predictability. And then, the iterative paradigm to recover the full k-space signal is determined by the projected gradient descent, and the complex computation is unrolled to the network with optimized parameters by the optimizer. Simulated wave encoding and in vivo experiments are exploited to demonstrate the feasibility of the proposed method. The best quantitative metrics RMSE/SSIM/PSNR of 0.0413, 0.9514, and 37.4862 gave competitive results in all experiments with at least six-fold acceleration, respectively. Results In vivo experiments of human brains and knees showed that the proposed method can achieve comparable reconstruction quality and even has superiority relative to the comparison, especially at a high resolution of 0.67 mm and fewer ACS. In addition, the proposed method has a higher computational efficiency achieving a computation time of 9.6 s/per slice. Conclusions The model proposed in this work addresses two limitations of MRI reconstruction in the wave encoding framework. The first is to eliminate the need for ACS signal acquisition to perform the time-consuming calibration process and to avoid errors such as motion during the acquisition procedure. Furthermore, the proposed method has clinical application friendly without the need to prepare large training datasets, which is difficult in the clinical. All results of the proposed method demonstrate more confidence in both quantitative and qualitative metrics. In addition, the proposed method can achieve higher computational efficiency." @default.
- W4366351340 created "2023-04-21" @default.
- W4366351340 creator A5016392085 @default.
- W4366351340 creator A5023484910 @default.
- W4366351340 creator A5025474414 @default.
- W4366351340 creator A5028232614 @default.
- W4366351340 creator A5031293241 @default.
- W4366351340 creator A5043069455 @default.
- W4366351340 creator A5060413435 @default.
- W4366351340 creator A5078397516 @default.
- W4366351340 creator A5087850504 @default.
- W4366351340 date "2023-04-19" @default.
- W4366351340 modified "2023-10-13" @default.
- W4366351340 title "Accelerated submillimeter wave‐encoded magnetic resonance imaging via deep untrained neural network" @default.
- W4366351340 cites W1599851467 @default.
- W4366351340 cites W19536506 @default.
- W4366351340 cites W1967667871 @default.
- W4366351340 cites W1996468945 @default.
- W4366351340 cites W2014547837 @default.
- W4366351340 cites W2019711911 @default.
- W4366351340 cites W2029816571 @default.
- W4366351340 cites W2047544187 @default.
- W4366351340 cites W2082615430 @default.
- W4366351340 cites W2097897435 @default.
- W4366351340 cites W2111388536 @default.
- W4366351340 cites W2117649283 @default.
- W4366351340 cites W2117700900 @default.
- W4366351340 cites W2123457453 @default.
- W4366351340 cites W2133665775 @default.
- W4366351340 cites W2167045955 @default.
- W4366351340 cites W2194775991 @default.
- W4366351340 cites W2196426102 @default.
- W4366351340 cites W2533805636 @default.
- W4366351340 cites W2565293665 @default.
- W4366351340 cites W2590090270 @default.
- W4366351340 cites W2604388535 @default.
- W4366351340 cites W2610522009 @default.
- W4366351340 cites W2755343159 @default.
- W4366351340 cites W2769830725 @default.
- W4366351340 cites W2777802649 @default.
- W4366351340 cites W2802312131 @default.
- W4366351340 cites W2803224943 @default.
- W4366351340 cites W2893726093 @default.
- W4366351340 cites W2913525019 @default.
- W4366351340 cites W2916033043 @default.
- W4366351340 cites W2963252441 @default.
- W4366351340 cites W2963682501 @default.
- W4366351340 cites W2980749987 @default.
- W4366351340 cites W2982609889 @default.
- W4366351340 cites W2999167634 @default.
- W4366351340 cites W3001319253 @default.
- W4366351340 cites W3009994569 @default.
- W4366351340 cites W3046334040 @default.
- W4366351340 cites W3047706622 @default.
- W4366351340 cites W3083719622 @default.
- W4366351340 cites W3111067891 @default.
- W4366351340 cites W3133170446 @default.
- W4366351340 cites W3154665549 @default.
- W4366351340 cites W3179726428 @default.
- W4366351340 cites W3184682426 @default.
- W4366351340 cites W3188455524 @default.
- W4366351340 cites W3212752536 @default.
- W4366351340 cites W4233764193 @default.
- W4366351340 cites W4249760698 @default.
- W4366351340 cites W4310396503 @default.
- W4366351340 doi "https://doi.org/10.1002/mp.16425" @default.
- W4366351340 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37073772" @default.
- W4366351340 hasPublicationYear "2023" @default.
- W4366351340 type Work @default.
- W4366351340 citedByCount "0" @default.
- W4366351340 crossrefType "journal-article" @default.
- W4366351340 hasAuthorship W4366351340A5016392085 @default.
- W4366351340 hasAuthorship W4366351340A5023484910 @default.
- W4366351340 hasAuthorship W4366351340A5025474414 @default.
- W4366351340 hasAuthorship W4366351340A5028232614 @default.
- W4366351340 hasAuthorship W4366351340A5031293241 @default.
- W4366351340 hasAuthorship W4366351340A5043069455 @default.
- W4366351340 hasAuthorship W4366351340A5060413435 @default.
- W4366351340 hasAuthorship W4366351340A5078397516 @default.
- W4366351340 hasAuthorship W4366351340A5087850504 @default.
- W4366351340 hasConcept C108583219 @default.
- W4366351340 hasConcept C11413529 @default.
- W4366351340 hasConcept C115961682 @default.
- W4366351340 hasConcept C124851039 @default.
- W4366351340 hasConcept C125411270 @default.
- W4366351340 hasConcept C127413603 @default.
- W4366351340 hasConcept C137800194 @default.
- W4366351340 hasConcept C141379421 @default.
- W4366351340 hasConcept C146849305 @default.
- W4366351340 hasConcept C153180895 @default.
- W4366351340 hasConcept C153258448 @default.
- W4366351340 hasConcept C154945302 @default.
- W4366351340 hasConcept C21200559 @default.
- W4366351340 hasConcept C24326235 @default.
- W4366351340 hasConcept C41008148 @default.
- W4366351340 hasConcept C50644808 @default.
- W4366351340 hasConceptScore W4366351340C108583219 @default.
- W4366351340 hasConceptScore W4366351340C11413529 @default.
- W4366351340 hasConceptScore W4366351340C115961682 @default.
- W4366351340 hasConceptScore W4366351340C124851039 @default.