Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366351498> ?p ?o ?g. }
- W4366351498 endingPage "e44237" @default.
- W4366351498 startingPage "e44237" @default.
- W4366351498 abstract "Approaches to addressing unwarranted variation in health care service delivery have traditionally relied on the prospective identification of activities and outcomes, based on a hypothesis, with subsequent reporting against defined measures. Practice-level prescribing data in England are made publicly available by the National Health Service (NHS) Business Services Authority for all general practices. There is an opportunity to adopt a more data-driven approach to capture variability and identify outliers by applying hypothesis-free, data-driven algorithms to national data sets.This study aimed to develop and apply a hypothesis-free algorithm to identify unusual prescribing behavior in primary care data at multiple administrative levels in the NHS in England and to visualize these results using organization-specific interactive dashboards, thereby demonstrating proof of concept for prioritization approaches.Here we report a new data-driven approach to quantify how unusual the prescribing rates of a particular chemical within an organization are as compared to peer organizations, over a period of 6 months (June-December 2021). This is followed by a ranking to identify which chemicals are the most notable outliers in each organization. These outlying chemicals are calculated for all practices, primary care networks, clinical commissioning groups, and sustainability and transformation partnerships in England. Our results are presented via organization-specific interactive dashboards, the iterative development of which has been informed by user feedback.We developed interactive dashboards for every practice (n=6476) in England, highlighting the unusual prescribing of 2369 chemicals (dashboards are also provided for 42 sustainability and transformation partnerships, 106 clinical commissioning groups, and 1257 primary care networks). User feedback and internal review of case studies demonstrate that our methodology identifies prescribing behavior that sometimes warrants further investigation or is a known issue.Data-driven approaches have the potential to overcome existing biases with regard to the planning and execution of audits, interventions, and policy making within NHS organizations, potentially revealing new targets for improved health care service delivery. We present our dashboards as a proof of concept for generating candidate lists to aid expert users in their interpretation of prescribing data and prioritize further investigations and qualitative research in terms of potential targets for improved performance." @default.
- W4366351498 created "2023-04-21" @default.
- W4366351498 creator A5006216908 @default.
- W4366351498 creator A5010056291 @default.
- W4366351498 creator A5011400484 @default.
- W4366351498 creator A5016519622 @default.
- W4366351498 creator A5032960366 @default.
- W4366351498 creator A5035210867 @default.
- W4366351498 creator A5042952004 @default.
- W4366351498 creator A5043696036 @default.
- W4366351498 creator A5043858858 @default.
- W4366351498 creator A5049699144 @default.
- W4366351498 creator A5054757405 @default.
- W4366351498 creator A5055949314 @default.
- W4366351498 creator A5078650356 @default.
- W4366351498 date "2023-04-19" @default.
- W4366351498 modified "2023-09-30" @default.
- W4366351498 title "Data-Driven Identification of Unusual Prescribing Behavior: Analysis and Use of an Interactive Data Tool Using 6 Months of Primary Care Data From 6500 Practices in England" @default.
- W4366351498 cites W1901991587 @default.
- W4366351498 cites W204885769 @default.
- W4366351498 cites W2105501846 @default.
- W4366351498 cites W2765680414 @default.
- W4366351498 cites W2786253994 @default.
- W4366351498 cites W2788547291 @default.
- W4366351498 cites W2790571740 @default.
- W4366351498 cites W2802498945 @default.
- W4366351498 cites W2803308770 @default.
- W4366351498 cites W2821526364 @default.
- W4366351498 cites W2890437785 @default.
- W4366351498 cites W2904176856 @default.
- W4366351498 cites W2909005807 @default.
- W4366351498 cites W3163192054 @default.
- W4366351498 cites W4312065018 @default.
- W4366351498 doi "https://doi.org/10.2196/44237" @default.
- W4366351498 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37074763" @default.
- W4366351498 hasPublicationYear "2023" @default.
- W4366351498 type Work @default.
- W4366351498 citedByCount "0" @default.
- W4366351498 crossrefType "journal-article" @default.
- W4366351498 hasAuthorship W4366351498A5006216908 @default.
- W4366351498 hasAuthorship W4366351498A5010056291 @default.
- W4366351498 hasAuthorship W4366351498A5011400484 @default.
- W4366351498 hasAuthorship W4366351498A5016519622 @default.
- W4366351498 hasAuthorship W4366351498A5032960366 @default.
- W4366351498 hasAuthorship W4366351498A5035210867 @default.
- W4366351498 hasAuthorship W4366351498A5042952004 @default.
- W4366351498 hasAuthorship W4366351498A5043696036 @default.
- W4366351498 hasAuthorship W4366351498A5043858858 @default.
- W4366351498 hasAuthorship W4366351498A5049699144 @default.
- W4366351498 hasAuthorship W4366351498A5054757405 @default.
- W4366351498 hasAuthorship W4366351498A5055949314 @default.
- W4366351498 hasAuthorship W4366351498A5078650356 @default.
- W4366351498 hasBestOaLocation W43663514981 @default.
- W4366351498 hasConcept C105795698 @default.
- W4366351498 hasConcept C116834253 @default.
- W4366351498 hasConcept C133462117 @default.
- W4366351498 hasConcept C144133560 @default.
- W4366351498 hasConcept C151719136 @default.
- W4366351498 hasConcept C154945302 @default.
- W4366351498 hasConcept C160735492 @default.
- W4366351498 hasConcept C162324750 @default.
- W4366351498 hasConcept C162853370 @default.
- W4366351498 hasConcept C165347436 @default.
- W4366351498 hasConcept C17744445 @default.
- W4366351498 hasConcept C189430467 @default.
- W4366351498 hasConcept C195094911 @default.
- W4366351498 hasConcept C199539241 @default.
- W4366351498 hasConcept C23123220 @default.
- W4366351498 hasConcept C2522767166 @default.
- W4366351498 hasConcept C2780378061 @default.
- W4366351498 hasConcept C33923547 @default.
- W4366351498 hasConcept C41008148 @default.
- W4366351498 hasConcept C50522688 @default.
- W4366351498 hasConcept C59822182 @default.
- W4366351498 hasConcept C68595000 @default.
- W4366351498 hasConcept C71924100 @default.
- W4366351498 hasConcept C79337645 @default.
- W4366351498 hasConcept C86803240 @default.
- W4366351498 hasConceptScore W4366351498C105795698 @default.
- W4366351498 hasConceptScore W4366351498C116834253 @default.
- W4366351498 hasConceptScore W4366351498C133462117 @default.
- W4366351498 hasConceptScore W4366351498C144133560 @default.
- W4366351498 hasConceptScore W4366351498C151719136 @default.
- W4366351498 hasConceptScore W4366351498C154945302 @default.
- W4366351498 hasConceptScore W4366351498C160735492 @default.
- W4366351498 hasConceptScore W4366351498C162324750 @default.
- W4366351498 hasConceptScore W4366351498C162853370 @default.
- W4366351498 hasConceptScore W4366351498C165347436 @default.
- W4366351498 hasConceptScore W4366351498C17744445 @default.
- W4366351498 hasConceptScore W4366351498C189430467 @default.
- W4366351498 hasConceptScore W4366351498C195094911 @default.
- W4366351498 hasConceptScore W4366351498C199539241 @default.
- W4366351498 hasConceptScore W4366351498C23123220 @default.
- W4366351498 hasConceptScore W4366351498C2522767166 @default.
- W4366351498 hasConceptScore W4366351498C2780378061 @default.
- W4366351498 hasConceptScore W4366351498C33923547 @default.
- W4366351498 hasConceptScore W4366351498C41008148 @default.
- W4366351498 hasConceptScore W4366351498C50522688 @default.