Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366352732> ?p ?o ?g. }
- W4366352732 endingPage "7055" @default.
- W4366352732 startingPage "7044" @default.
- W4366352732 abstract "Analysis of textural features of pulmonary nodules in chest CT, also known as radiomics, has several potential clinical applications, such as diagnosis, prognostication, and treatment response monitoring. For clinical use, it is essential that these features provide robust measurements. Studies with phantoms and simulated lower dose levels have demonstrated that radiomic features can vary with different radiation dose levels. This study presents an in vivo stability analysis of radiomic features for pulmonary nodules against varying radiation dose levels.Nineteen patients with a total of thirty-five pulmonary nodules underwent four chest CT scans at different radiation dose levels (60, 33, 24, and 15 mAs) in a single session. The nodules were manually delineated. To assess the robustness of features, we calculated the intra-class correlation coefficient (ICC). To visualize the effect of milliampere-second variation on groups of features, a linear model was fitted to each feature. We calculated bias and calculated the R2 value as a measure of goodness of fit.A small minority of 15/100 (15%) radiomic features were considered stable (ICC > 0.9). Bias increased and R2 decreased at lower dose, but shape features seemed to be more robust to milliampere-second variations than other feature classes.A large majority of pulmonary nodule radiomic features were not inherently robust to radiation dose level variations. For a subset of features, it was possible to correct this variability by a simple linear model. However, the correction became increasingly less accurate at lower radiation dose levels.Radiomic features provide a quantitative description of a tumor based on medical imaging such as computed tomography (CT). These features are potentially useful in several clinical tasks such as diagnosis, prognosis prediction, treatment effect monitoring, and treatment effect estimation.• The vast majority of commonly used radiomic features are strongly influenced by variations in radiation dose level. • A small minority of radiomic features, notably the shape feature class, are robust against dose-level variations according to ICC calculations. • A large subset of radiomic features can be corrected by a linear model taking into account only the radiation dose level." @default.
- W4366352732 created "2023-04-21" @default.
- W4366352732 creator A5004200111 @default.
- W4366352732 creator A5008675143 @default.
- W4366352732 creator A5009857138 @default.
- W4366352732 creator A5024779756 @default.
- W4366352732 creator A5053071529 @default.
- W4366352732 creator A5063560179 @default.
- W4366352732 creator A5081673746 @default.
- W4366352732 date "2023-04-19" @default.
- W4366352732 modified "2023-10-14" @default.
- W4366352732 title "Robustness of pulmonary nodule radiomic features on computed tomography as a function of varying radiation dose levels—a multi-dose in vivo patient study" @default.
- W4366352732 cites W1998572608 @default.
- W4366352732 cites W2001467120 @default.
- W4366352732 cites W2141403362 @default.
- W4366352732 cites W2263918537 @default.
- W4366352732 cites W2268041189 @default.
- W4366352732 cites W2327037637 @default.
- W4366352732 cites W2342201383 @default.
- W4366352732 cites W2560322684 @default.
- W4366352732 cites W2586281702 @default.
- W4366352732 cites W2617036670 @default.
- W4366352732 cites W2753416097 @default.
- W4366352732 cites W2767128594 @default.
- W4366352732 cites W2791459212 @default.
- W4366352732 cites W2801316959 @default.
- W4366352732 cites W2809092679 @default.
- W4366352732 cites W2958287596 @default.
- W4366352732 cites W2966555834 @default.
- W4366352732 cites W2969616175 @default.
- W4366352732 cites W2971096619 @default.
- W4366352732 cites W2977270522 @default.
- W4366352732 cites W2996810335 @default.
- W4366352732 cites W2998789541 @default.
- W4366352732 cites W2999391818 @default.
- W4366352732 cites W3023668271 @default.
- W4366352732 cites W3026239318 @default.
- W4366352732 cites W3026594865 @default.
- W4366352732 cites W3046015102 @default.
- W4366352732 cites W3128022038 @default.
- W4366352732 cites W3153823012 @default.
- W4366352732 cites W4234180827 @default.
- W4366352732 doi "https://doi.org/10.1007/s00330-023-09643-8" @default.
- W4366352732 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37074424" @default.
- W4366352732 hasPublicationYear "2023" @default.
- W4366352732 type Work @default.
- W4366352732 citedByCount "0" @default.
- W4366352732 crossrefType "journal-article" @default.
- W4366352732 hasAuthorship W4366352732A5004200111 @default.
- W4366352732 hasAuthorship W4366352732A5008675143 @default.
- W4366352732 hasAuthorship W4366352732A5009857138 @default.
- W4366352732 hasAuthorship W4366352732A5024779756 @default.
- W4366352732 hasAuthorship W4366352732A5053071529 @default.
- W4366352732 hasAuthorship W4366352732A5063560179 @default.
- W4366352732 hasAuthorship W4366352732A5081673746 @default.
- W4366352732 hasBestOaLocation W43663527321 @default.
- W4366352732 hasConcept C104317684 @default.
- W4366352732 hasConcept C118552586 @default.
- W4366352732 hasConcept C126838900 @default.
- W4366352732 hasConcept C138885662 @default.
- W4366352732 hasConcept C16568411 @default.
- W4366352732 hasConcept C185592680 @default.
- W4366352732 hasConcept C2776401178 @default.
- W4366352732 hasConcept C2779889316 @default.
- W4366352732 hasConcept C2780244788 @default.
- W4366352732 hasConcept C2989005 @default.
- W4366352732 hasConcept C41895202 @default.
- W4366352732 hasConcept C509974204 @default.
- W4366352732 hasConcept C513090587 @default.
- W4366352732 hasConcept C544519230 @default.
- W4366352732 hasConcept C55493867 @default.
- W4366352732 hasConcept C63479239 @default.
- W4366352732 hasConcept C71924100 @default.
- W4366352732 hasConceptScore W4366352732C104317684 @default.
- W4366352732 hasConceptScore W4366352732C118552586 @default.
- W4366352732 hasConceptScore W4366352732C126838900 @default.
- W4366352732 hasConceptScore W4366352732C138885662 @default.
- W4366352732 hasConceptScore W4366352732C16568411 @default.
- W4366352732 hasConceptScore W4366352732C185592680 @default.
- W4366352732 hasConceptScore W4366352732C2776401178 @default.
- W4366352732 hasConceptScore W4366352732C2779889316 @default.
- W4366352732 hasConceptScore W4366352732C2780244788 @default.
- W4366352732 hasConceptScore W4366352732C2989005 @default.
- W4366352732 hasConceptScore W4366352732C41895202 @default.
- W4366352732 hasConceptScore W4366352732C509974204 @default.
- W4366352732 hasConceptScore W4366352732C513090587 @default.
- W4366352732 hasConceptScore W4366352732C544519230 @default.
- W4366352732 hasConceptScore W4366352732C55493867 @default.
- W4366352732 hasConceptScore W4366352732C63479239 @default.
- W4366352732 hasConceptScore W4366352732C71924100 @default.
- W4366352732 hasIssue "10" @default.
- W4366352732 hasLocation W43663527321 @default.
- W4366352732 hasLocation W43663527322 @default.
- W4366352732 hasOpenAccess W4366352732 @default.
- W4366352732 hasPrimaryLocation W43663527321 @default.
- W4366352732 hasRelatedWork W1976967311 @default.
- W4366352732 hasRelatedWork W2025203391 @default.
- W4366352732 hasRelatedWork W2139687085 @default.