Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366352743> ?p ?o ?g. }
- W4366352743 endingPage "10816" @default.
- W4366352743 startingPage "10795" @default.
- W4366352743 abstract "Deep long-tailed learning, one of the most challenging problems in visual recognition, aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution. In the last decade, deep learning has emerged as a powerful recognition model for learning high-quality image representations and has led to remarkable breakthroughs in generic visual recognition. However, long-tailed class imbalance, a common problem in practical visual recognition tasks, often limits the practicality of deep network based recognition models in real-world applications, since they can be easily biased towards dominant classes and perform poorly on tail classes. To address this problem, a large number of studies have been conducted in recent years, making promising progress in the field of deep long-tailed learning. Considering the rapid evolution of this field, this article aims to provide a comprehensive survey on recent advances in deep long-tailed learning. To be specific, we group existing deep long-tailed learning studies into three main categories (i.e., class re-balancing, information augmentation and module improvement), and review these methods following this taxonomy in detail. Afterward, we empirically analyze several state-of-the-art methods by evaluating to what extent they address the issue of class imbalance via a newly proposed evaluation metric, i.e., relative accuracy. We conclude the survey by highlighting important applications of deep long-tailed learning and identifying several promising directions for future research." @default.
- W4366352743 created "2023-04-21" @default.
- W4366352743 creator A5032599820 @default.
- W4366352743 creator A5033884558 @default.
- W4366352743 creator A5036658104 @default.
- W4366352743 creator A5039765869 @default.
- W4366352743 creator A5065675832 @default.
- W4366352743 date "2023-09-01" @default.
- W4366352743 modified "2023-10-12" @default.
- W4366352743 title "Deep Long-Tailed Learning: A Survey" @default.
- W4366352743 cites W1608733719 @default.
- W4366352743 cites W1885185971 @default.
- W4366352743 cites W1966620628 @default.
- W4366352743 cites W2023639956 @default.
- W4366352743 cites W2037227137 @default.
- W4366352743 cites W2051458493 @default.
- W4366352743 cites W2076291620 @default.
- W4366352743 cites W2079057609 @default.
- W4366352743 cites W2087309226 @default.
- W4366352743 cites W2102605133 @default.
- W4366352743 cites W2103614420 @default.
- W4366352743 cites W2108598243 @default.
- W4366352743 cites W2115403315 @default.
- W4366352743 cites W2118978333 @default.
- W4366352743 cites W2119191234 @default.
- W4366352743 cites W2119303899 @default.
- W4366352743 cites W2121152275 @default.
- W4366352743 cites W2122111042 @default.
- W4366352743 cites W2132791018 @default.
- W4366352743 cites W2148143831 @default.
- W4366352743 cites W2151103935 @default.
- W4366352743 cites W2161969291 @default.
- W4366352743 cites W2165698076 @default.
- W4366352743 cites W2194775991 @default.
- W4366352743 cites W2295107390 @default.
- W4366352743 cites W2395611524 @default.
- W4366352743 cites W2440599146 @default.
- W4366352743 cites W2469885745 @default.
- W4366352743 cites W2593768305 @default.
- W4366352743 cites W2763549966 @default.
- W4366352743 cites W2775447965 @default.
- W4366352743 cites W2781292787 @default.
- W4366352743 cites W2794284562 @default.
- W4366352743 cites W2797977484 @default.
- W4366352743 cites W2798381792 @default.
- W4366352743 cites W2798658180 @default.
- W4366352743 cites W2809379039 @default.
- W4366352743 cites W2887280559 @default.
- W4366352743 cites W2913592748 @default.
- W4366352743 cites W2914885528 @default.
- W4366352743 cites W2919115771 @default.
- W4366352743 cites W2948672349 @default.
- W4366352743 cites W2951398059 @default.
- W4366352743 cites W2954996726 @default.
- W4366352743 cites W2962895364 @default.
- W4366352743 cites W2962933664 @default.
- W4366352743 cites W2963351448 @default.
- W4366352743 cites W2963691377 @default.
- W4366352743 cites W2963703197 @default.
- W4366352743 cites W2963943197 @default.
- W4366352743 cites W2964105864 @default.
- W4366352743 cites W2970084480 @default.
- W4366352743 cites W2981720610 @default.
- W4366352743 cites W2984810221 @default.
- W4366352743 cites W2991288769 @default.
- W4366352743 cites W2991391304 @default.
- W4366352743 cites W3010512657 @default.
- W4366352743 cites W3013529009 @default.
- W4366352743 cites W3034368386 @default.
- W4366352743 cites W3034369739 @default.
- W4366352743 cites W3034601242 @default.
- W4366352743 cites W3034711780 @default.
- W4366352743 cites W3034933032 @default.
- W4366352743 cites W3034942609 @default.
- W4366352743 cites W3035054804 @default.
- W4366352743 cites W3035303987 @default.
- W4366352743 cites W3035305184 @default.
- W4366352743 cites W3035342001 @default.
- W4366352743 cites W3035524453 @default.
- W4366352743 cites W3035552357 @default.
- W4366352743 cites W3035682985 @default.
- W4366352743 cites W3035730922 @default.
- W4366352743 cites W3041497966 @default.
- W4366352743 cites W3093220398 @default.
- W4366352743 cites W3095707208 @default.
- W4366352743 cites W3096121526 @default.
- W4366352743 cites W3096688134 @default.
- W4366352743 cites W3103152812 @default.
- W4366352743 cites W3103904664 @default.
- W4366352743 cites W3108070979 @default.
- W4366352743 cites W3108105109 @default.
- W4366352743 cites W3110148193 @default.
- W4366352743 cites W3158299003 @default.
- W4366352743 cites W3166228617 @default.
- W4366352743 cites W3166596953 @default.
- W4366352743 cites W3167251133 @default.
- W4366352743 cites W3171998492 @default.
- W4366352743 cites W3172971995 @default.