Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366367877> ?p ?o ?g. }
- W4366367877 endingPage "494" @default.
- W4366367877 startingPage "489" @default.
- W4366367877 abstract "Effective plant growth and yield prediction is an essential task for greenhouse growers and for agriculture in general. Developing models which can effectively model growth and yield can help growers improve the environmental control for better production, match supply and market demand and lower costs. Recent developments in Machine Learning (ML) and, in particular, Deep Learning (DL) can provide powerful new analytical tools. The proposed study utilities ML and DL techniques to predict yield and plant growth on Ficus Benjamin stem growth, in controlled greenhouse environments. We deploy a new deep recurrent neural network (RNN), using the Long Short-Term Memory (LSTM) neuron model, in the prediction formulations. Both the former yield, growth and stem diameter values, as well as the microclimate conditions, are used by the RNN architecture to model the targeted growth parameters. A comparative study is presented, using ML methods, such as support vector regression and random forest regression, utilizing the mean square error criterion, in order to evaluate the performance achieved by the different methods." @default.
- W4366367877 created "2023-04-21" @default.
- W4366367877 creator A5009237010 @default.
- W4366367877 creator A5020963055 @default.
- W4366367877 creator A5025537067 @default.
- W4366367877 creator A5036738061 @default.
- W4366367877 creator A5037753065 @default.
- W4366367877 creator A5050123551 @default.
- W4366367877 date "2023-04-19" @default.
- W4366367877 modified "2023-10-01" @default.
- W4366367877 title "Deep Learning to Predict Plant Growth and Yield in Green House Environment" @default.
- W4366367877 cites W1983738571 @default.
- W4366367877 cites W2032977879 @default.
- W4366367877 cites W2064675550 @default.
- W4366367877 cites W2067507248 @default.
- W4366367877 cites W2072033391 @default.
- W4366367877 cites W2185489349 @default.
- W4366367877 cites W2790979755 @default.
- W4366367877 cites W2805142011 @default.
- W4366367877 cites W4239510810 @default.
- W4366367877 cites W4249775929 @default.
- W4366367877 cites W768425019 @default.
- W4366367877 doi "https://doi.org/10.48175/ijarsct-9242" @default.
- W4366367877 hasPublicationYear "2023" @default.
- W4366367877 type Work @default.
- W4366367877 citedByCount "0" @default.
- W4366367877 crossrefType "journal-article" @default.
- W4366367877 hasAuthorship W4366367877A5009237010 @default.
- W4366367877 hasAuthorship W4366367877A5020963055 @default.
- W4366367877 hasAuthorship W4366367877A5025537067 @default.
- W4366367877 hasAuthorship W4366367877A5036738061 @default.
- W4366367877 hasAuthorship W4366367877A5037753065 @default.
- W4366367877 hasAuthorship W4366367877A5050123551 @default.
- W4366367877 hasBestOaLocation W43663678771 @default.
- W4366367877 hasConcept C105795698 @default.
- W4366367877 hasConcept C108583219 @default.
- W4366367877 hasConcept C118518473 @default.
- W4366367877 hasConcept C119857082 @default.
- W4366367877 hasConcept C12267149 @default.
- W4366367877 hasConcept C127413603 @default.
- W4366367877 hasConcept C134121241 @default.
- W4366367877 hasConcept C147168706 @default.
- W4366367877 hasConcept C154945302 @default.
- W4366367877 hasConcept C166957645 @default.
- W4366367877 hasConcept C169258074 @default.
- W4366367877 hasConcept C191897082 @default.
- W4366367877 hasConcept C192562407 @default.
- W4366367877 hasConcept C201995342 @default.
- W4366367877 hasConcept C205649164 @default.
- W4366367877 hasConcept C2780451532 @default.
- W4366367877 hasConcept C32198211 @default.
- W4366367877 hasConcept C32957820 @default.
- W4366367877 hasConcept C33923547 @default.
- W4366367877 hasConcept C41008148 @default.
- W4366367877 hasConcept C50644808 @default.
- W4366367877 hasConcept C6557445 @default.
- W4366367877 hasConcept C83546350 @default.
- W4366367877 hasConcept C86803240 @default.
- W4366367877 hasConcept C88463610 @default.
- W4366367877 hasConceptScore W4366367877C105795698 @default.
- W4366367877 hasConceptScore W4366367877C108583219 @default.
- W4366367877 hasConceptScore W4366367877C118518473 @default.
- W4366367877 hasConceptScore W4366367877C119857082 @default.
- W4366367877 hasConceptScore W4366367877C12267149 @default.
- W4366367877 hasConceptScore W4366367877C127413603 @default.
- W4366367877 hasConceptScore W4366367877C134121241 @default.
- W4366367877 hasConceptScore W4366367877C147168706 @default.
- W4366367877 hasConceptScore W4366367877C154945302 @default.
- W4366367877 hasConceptScore W4366367877C166957645 @default.
- W4366367877 hasConceptScore W4366367877C169258074 @default.
- W4366367877 hasConceptScore W4366367877C191897082 @default.
- W4366367877 hasConceptScore W4366367877C192562407 @default.
- W4366367877 hasConceptScore W4366367877C201995342 @default.
- W4366367877 hasConceptScore W4366367877C205649164 @default.
- W4366367877 hasConceptScore W4366367877C2780451532 @default.
- W4366367877 hasConceptScore W4366367877C32198211 @default.
- W4366367877 hasConceptScore W4366367877C32957820 @default.
- W4366367877 hasConceptScore W4366367877C33923547 @default.
- W4366367877 hasConceptScore W4366367877C41008148 @default.
- W4366367877 hasConceptScore W4366367877C50644808 @default.
- W4366367877 hasConceptScore W4366367877C6557445 @default.
- W4366367877 hasConceptScore W4366367877C83546350 @default.
- W4366367877 hasConceptScore W4366367877C86803240 @default.
- W4366367877 hasConceptScore W4366367877C88463610 @default.
- W4366367877 hasLocation W43663678771 @default.
- W4366367877 hasOpenAccess W4366367877 @default.
- W4366367877 hasPrimaryLocation W43663678771 @default.
- W4366367877 hasRelatedWork W2979979539 @default.
- W4366367877 hasRelatedWork W3136979370 @default.
- W4366367877 hasRelatedWork W3195168932 @default.
- W4366367877 hasRelatedWork W3211546796 @default.
- W4366367877 hasRelatedWork W4205958290 @default.
- W4366367877 hasRelatedWork W4223564025 @default.
- W4366367877 hasRelatedWork W4281616679 @default.
- W4366367877 hasRelatedWork W4311106074 @default.
- W4366367877 hasRelatedWork W4320483443 @default.
- W4366367877 hasRelatedWork W4322727400 @default.
- W4366367877 isParatext "false" @default.