Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366374509> ?p ?o ?g. }
- W4366374509 abstract "Human emotions are the basic element in the determination of a human’s cognitive abilities. These are the reaction of the human brain to internal or external events. Recognizing of different human emotions using a brain-machine interface is a crucial in understanding the emotional well-being of a patient who is completely paralyzed. One of the modalities for capturing neural activities in a brain-machine interface for recognizing human emotions is electroencephalogram (EEG). EEG-based systems for recognizing human emotions could offer a quick, simple, accessible, and user-friendly method for determining emotions. In the last few years emotion identification based on EEG has achieved significant attention. Many machine learning involved technologies have been developed for the classification of emotions of humans. Here we review the modern developments in the research area of emotion identification using deep learning methods, focusing on both feature extraction and classification methods. We also present the comparison of the accuracies obtained by different models." @default.
- W4366374509 created "2023-04-21" @default.
- W4366374509 creator A5057303288 @default.
- W4366374509 creator A5076418058 @default.
- W4366374509 creator A5077503430 @default.
- W4366374509 creator A5085388566 @default.
- W4366374509 creator A5085452370 @default.
- W4366374509 date "2023-03-03" @default.
- W4366374509 modified "2023-09-26" @default.
- W4366374509 title "EEG-based Emotion Classification - A Theoretical Perusal of Deep Learning Methods" @default.
- W4366374509 cites W2002055708 @default.
- W4366374509 cites W2012711836 @default.
- W4366374509 cites W2122098299 @default.
- W4366374509 cites W2165857685 @default.
- W4366374509 cites W2411870086 @default.
- W4366374509 cites W2599124244 @default.
- W4366374509 cites W2731964405 @default.
- W4366374509 cites W2891840684 @default.
- W4366374509 cites W2903462437 @default.
- W4366374509 cites W2934123712 @default.
- W4366374509 cites W2979386028 @default.
- W4366374509 cites W2979885891 @default.
- W4366374509 cites W2979896433 @default.
- W4366374509 cites W3032135501 @default.
- W4366374509 cites W3043308633 @default.
- W4366374509 cites W3080459878 @default.
- W4366374509 cites W3080946082 @default.
- W4366374509 cites W3081599307 @default.
- W4366374509 cites W3099132019 @default.
- W4366374509 cites W3108564553 @default.
- W4366374509 cites W3115745466 @default.
- W4366374509 cites W3120929420 @default.
- W4366374509 cites W3128254639 @default.
- W4366374509 cites W3158824420 @default.
- W4366374509 cites W3186240196 @default.
- W4366374509 cites W3189300284 @default.
- W4366374509 cites W3203713559 @default.
- W4366374509 cites W4200539225 @default.
- W4366374509 cites W4210878028 @default.
- W4366374509 cites W4213153660 @default.
- W4366374509 cites W4213199906 @default.
- W4366374509 cites W4285073114 @default.
- W4366374509 cites W4294308527 @default.
- W4366374509 doi "https://doi.org/10.1109/inocon57975.2023.10101002" @default.
- W4366374509 hasPublicationYear "2023" @default.
- W4366374509 type Work @default.
- W4366374509 citedByCount "0" @default.
- W4366374509 crossrefType "proceedings-article" @default.
- W4366374509 hasAuthorship W4366374509A5057303288 @default.
- W4366374509 hasAuthorship W4366374509A5076418058 @default.
- W4366374509 hasAuthorship W4366374509A5077503430 @default.
- W4366374509 hasAuthorship W4366374509A5085388566 @default.
- W4366374509 hasAuthorship W4366374509A5085452370 @default.
- W4366374509 hasConcept C108583219 @default.
- W4366374509 hasConcept C113843644 @default.
- W4366374509 hasConcept C116834253 @default.
- W4366374509 hasConcept C129307140 @default.
- W4366374509 hasConcept C138885662 @default.
- W4366374509 hasConcept C144024400 @default.
- W4366374509 hasConcept C153180895 @default.
- W4366374509 hasConcept C154945302 @default.
- W4366374509 hasConcept C15744967 @default.
- W4366374509 hasConcept C157915830 @default.
- W4366374509 hasConcept C169760540 @default.
- W4366374509 hasConcept C169900460 @default.
- W4366374509 hasConcept C173201364 @default.
- W4366374509 hasConcept C173608175 @default.
- W4366374509 hasConcept C206310091 @default.
- W4366374509 hasConcept C2776401178 @default.
- W4366374509 hasConcept C2777438025 @default.
- W4366374509 hasConcept C2777670902 @default.
- W4366374509 hasConcept C2779903281 @default.
- W4366374509 hasConcept C2986798296 @default.
- W4366374509 hasConcept C36289849 @default.
- W4366374509 hasConcept C41008148 @default.
- W4366374509 hasConcept C41895202 @default.
- W4366374509 hasConcept C522805319 @default.
- W4366374509 hasConcept C52622490 @default.
- W4366374509 hasConcept C59822182 @default.
- W4366374509 hasConcept C6438553 @default.
- W4366374509 hasConcept C86803240 @default.
- W4366374509 hasConceptScore W4366374509C108583219 @default.
- W4366374509 hasConceptScore W4366374509C113843644 @default.
- W4366374509 hasConceptScore W4366374509C116834253 @default.
- W4366374509 hasConceptScore W4366374509C129307140 @default.
- W4366374509 hasConceptScore W4366374509C138885662 @default.
- W4366374509 hasConceptScore W4366374509C144024400 @default.
- W4366374509 hasConceptScore W4366374509C153180895 @default.
- W4366374509 hasConceptScore W4366374509C154945302 @default.
- W4366374509 hasConceptScore W4366374509C15744967 @default.
- W4366374509 hasConceptScore W4366374509C157915830 @default.
- W4366374509 hasConceptScore W4366374509C169760540 @default.
- W4366374509 hasConceptScore W4366374509C169900460 @default.
- W4366374509 hasConceptScore W4366374509C173201364 @default.
- W4366374509 hasConceptScore W4366374509C173608175 @default.
- W4366374509 hasConceptScore W4366374509C206310091 @default.
- W4366374509 hasConceptScore W4366374509C2776401178 @default.
- W4366374509 hasConceptScore W4366374509C2777438025 @default.
- W4366374509 hasConceptScore W4366374509C2777670902 @default.
- W4366374509 hasConceptScore W4366374509C2779903281 @default.