Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366374512> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4366374512 abstract "In a distributed system, fog computing (FC) is an emerging computer technique. The goal of FC is to position cloud-based services in close proximity to endpoints. The method is meant to meet the minimal latency requirement for Iot - based healthcare equipment. There is a wide range of healthcare data volumes produced by Iot - based healthcare equipment. Network congestion and increased delay are the direct effects of this massive influx of data. Patient information is rendered useless and insufficient for end-users when round-trip time delays rise due to huge data transfer and increasing hop counts between IoTs and cloud servers. In the healthcare industry, real-time data is essential for time-sensitive applications. The medical IoT devices and their users have stringent requirements for latency, and traditional cloud servers just can’t provide them. Therefore, it is important to decrease network delay, compute latency, and communications latency while transmitting data through the Internet of Things. FC allows data to be stored, processed, and analyzed in the cloud and at the network’s edge, where the latency is lower. This article proposes an innovative approach to solving the aforementioned issue. It combines an FC-based analytical model with a hybrid fuzzy-based RL algorithm. High latency in healthcare IoTs, between users and cloud servers, is something that has to be mitigated. Allocation and selection of data packets in an IoT-FC setting are handled with the help of a fuzzy inference system, reinforcement learning, and neural network evolution techniques provided by the suggested smart FC model parameters and algorithms. The method is put through its paces on the iFogSim (Net-Beans) as well as Spyder simulations (Python). The acquired findings demonstrated that the suggested strategy outperformed the state-of-the-art techniques." @default.
- W4366374512 created "2023-04-21" @default.
- W4366374512 creator A5027150908 @default.
- W4366374512 creator A5032463265 @default.
- W4366374512 date "2023-03-03" @default.
- W4366374512 modified "2023-09-30" @default.
- W4366374512 title "Low Latency Consistency based Protocol for Fog Computing Systems using CoAP with Machine Learning" @default.
- W4366374512 cites W2872013922 @default.
- W4366374512 cites W2914682281 @default.
- W4366374512 cites W2970361472 @default.
- W4366374512 cites W2980329246 @default.
- W4366374512 cites W3011254899 @default.
- W4366374512 cites W3025555684 @default.
- W4366374512 cites W3092594860 @default.
- W4366374512 cites W3095011402 @default.
- W4366374512 cites W3117956098 @default.
- W4366374512 cites W3176843261 @default.
- W4366374512 cites W3196136347 @default.
- W4366374512 cites W4206774559 @default.
- W4366374512 cites W4220919014 @default.
- W4366374512 cites W4226435948 @default.
- W4366374512 cites W4296993380 @default.
- W4366374512 cites W4312317209 @default.
- W4366374512 cites W4312549007 @default.
- W4366374512 cites W4312633470 @default.
- W4366374512 doi "https://doi.org/10.1109/inocon57975.2023.10101176" @default.
- W4366374512 hasPublicationYear "2023" @default.
- W4366374512 type Work @default.
- W4366374512 citedByCount "0" @default.
- W4366374512 crossrefType "proceedings-article" @default.
- W4366374512 hasAuthorship W4366374512A5027150908 @default.
- W4366374512 hasAuthorship W4366374512A5032463265 @default.
- W4366374512 hasConcept C111919701 @default.
- W4366374512 hasConcept C120314980 @default.
- W4366374512 hasConcept C153740404 @default.
- W4366374512 hasConcept C154945302 @default.
- W4366374512 hasConcept C158379750 @default.
- W4366374512 hasConcept C2778456923 @default.
- W4366374512 hasConcept C31258907 @default.
- W4366374512 hasConcept C41008148 @default.
- W4366374512 hasConcept C76155785 @default.
- W4366374512 hasConcept C79974875 @default.
- W4366374512 hasConcept C82876162 @default.
- W4366374512 hasConcept C93996380 @default.
- W4366374512 hasConcept C97541855 @default.
- W4366374512 hasConceptScore W4366374512C111919701 @default.
- W4366374512 hasConceptScore W4366374512C120314980 @default.
- W4366374512 hasConceptScore W4366374512C153740404 @default.
- W4366374512 hasConceptScore W4366374512C154945302 @default.
- W4366374512 hasConceptScore W4366374512C158379750 @default.
- W4366374512 hasConceptScore W4366374512C2778456923 @default.
- W4366374512 hasConceptScore W4366374512C31258907 @default.
- W4366374512 hasConceptScore W4366374512C41008148 @default.
- W4366374512 hasConceptScore W4366374512C76155785 @default.
- W4366374512 hasConceptScore W4366374512C79974875 @default.
- W4366374512 hasConceptScore W4366374512C82876162 @default.
- W4366374512 hasConceptScore W4366374512C93996380 @default.
- W4366374512 hasConceptScore W4366374512C97541855 @default.
- W4366374512 hasLocation W43663745121 @default.
- W4366374512 hasOpenAccess W4366374512 @default.
- W4366374512 hasPrimaryLocation W43663745121 @default.
- W4366374512 hasRelatedWork W2077541928 @default.
- W4366374512 hasRelatedWork W2512832353 @default.
- W4366374512 hasRelatedWork W2572613012 @default.
- W4366374512 hasRelatedWork W2596044387 @default.
- W4366374512 hasRelatedWork W2945616868 @default.
- W4366374512 hasRelatedWork W3114501693 @default.
- W4366374512 hasRelatedWork W3134318636 @default.
- W4366374512 hasRelatedWork W3185591558 @default.
- W4366374512 hasRelatedWork W4200573894 @default.
- W4366374512 hasRelatedWork W4210409506 @default.
- W4366374512 isParatext "false" @default.
- W4366374512 isRetracted "false" @default.
- W4366374512 workType "article" @default.