Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366375041> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4366375041 abstract "This work proposes a video understanding technique that primarily focuses on the individual action recognition appearing in the video. The state-of-the-art showed promising work in video understanding. Though, it's essential to require inclusive information on human action in real-time CCTV video surveillance, sports video analysis, health care, etc. This paper proposed a transfer learning deep neural network model designed for recognizing individual actions accomplished by multiple people in a video sequence. This research established a deep model which uses Region-Of-Interest (RoI) pooling layer to capture automated features from a specified video frame to recognize individual actions. The MobileNet model accomplishes this as the backbone to recognize individual actions from each video frame. The accuracy score of the model was compared with the CNN models VGG-19,InceptionV3, and MobileNet. The MobileNet is computationally low-cost and enhances the performance of individual action recognition performed by multiple humans in a video frame. The investigational results were evaluated by varying learning parameters, and optimizer of deep neural network. The experimental results of the proposed model for individual action recognition demonstrate the improved efficiency of the standard benchmark collective activity dataset. This research illustrates the progress of action recognition by employing the transfer learning CNN model along with RoI pooling layer." @default.
- W4366375041 created "2023-04-21" @default.
- W4366375041 creator A5061962496 @default.
- W4366375041 creator A5083595372 @default.
- W4366375041 date "2023-03-01" @default.
- W4366375041 modified "2023-09-26" @default.
- W4366375041 title "Insight on Human Activity Recognition Using the Deep Learning Approach" @default.
- W4366375041 cites W100367037 @default.
- W4366375041 cites W1587992356 @default.
- W4366375041 cites W1947746128 @default.
- W4366375041 cites W1983705368 @default.
- W4366375041 cites W2098602721 @default.
- W4366375041 cites W2117539524 @default.
- W4366375041 cites W2138332955 @default.
- W4366375041 cites W2171544105 @default.
- W4366375041 cites W2183341477 @default.
- W4366375041 cites W2259801182 @default.
- W4366375041 cites W3023755016 @default.
- W4366375041 doi "https://doi.org/10.1109/esci56872.2023.10099759" @default.
- W4366375041 hasPublicationYear "2023" @default.
- W4366375041 type Work @default.
- W4366375041 citedByCount "0" @default.
- W4366375041 crossrefType "proceedings-article" @default.
- W4366375041 hasAuthorship W4366375041A5061962496 @default.
- W4366375041 hasAuthorship W4366375041A5083595372 @default.
- W4366375041 hasConcept C108583219 @default.
- W4366375041 hasConcept C119857082 @default.
- W4366375041 hasConcept C121332964 @default.
- W4366375041 hasConcept C121687571 @default.
- W4366375041 hasConcept C126042441 @default.
- W4366375041 hasConcept C13280743 @default.
- W4366375041 hasConcept C150899416 @default.
- W4366375041 hasConcept C153180895 @default.
- W4366375041 hasConcept C154945302 @default.
- W4366375041 hasConcept C185798385 @default.
- W4366375041 hasConcept C205649164 @default.
- W4366375041 hasConcept C2777212361 @default.
- W4366375041 hasConcept C2780791683 @default.
- W4366375041 hasConcept C2987834672 @default.
- W4366375041 hasConcept C31972630 @default.
- W4366375041 hasConcept C41008148 @default.
- W4366375041 hasConcept C50644808 @default.
- W4366375041 hasConcept C62520636 @default.
- W4366375041 hasConcept C70437156 @default.
- W4366375041 hasConcept C76155785 @default.
- W4366375041 hasConcept C81363708 @default.
- W4366375041 hasConceptScore W4366375041C108583219 @default.
- W4366375041 hasConceptScore W4366375041C119857082 @default.
- W4366375041 hasConceptScore W4366375041C121332964 @default.
- W4366375041 hasConceptScore W4366375041C121687571 @default.
- W4366375041 hasConceptScore W4366375041C126042441 @default.
- W4366375041 hasConceptScore W4366375041C13280743 @default.
- W4366375041 hasConceptScore W4366375041C150899416 @default.
- W4366375041 hasConceptScore W4366375041C153180895 @default.
- W4366375041 hasConceptScore W4366375041C154945302 @default.
- W4366375041 hasConceptScore W4366375041C185798385 @default.
- W4366375041 hasConceptScore W4366375041C205649164 @default.
- W4366375041 hasConceptScore W4366375041C2777212361 @default.
- W4366375041 hasConceptScore W4366375041C2780791683 @default.
- W4366375041 hasConceptScore W4366375041C2987834672 @default.
- W4366375041 hasConceptScore W4366375041C31972630 @default.
- W4366375041 hasConceptScore W4366375041C41008148 @default.
- W4366375041 hasConceptScore W4366375041C50644808 @default.
- W4366375041 hasConceptScore W4366375041C62520636 @default.
- W4366375041 hasConceptScore W4366375041C70437156 @default.
- W4366375041 hasConceptScore W4366375041C76155785 @default.
- W4366375041 hasConceptScore W4366375041C81363708 @default.
- W4366375041 hasLocation W43663750411 @default.
- W4366375041 hasOpenAccess W4366375041 @default.
- W4366375041 hasPrimaryLocation W43663750411 @default.
- W4366375041 hasRelatedWork W2738221750 @default.
- W4366375041 hasRelatedWork W2963958939 @default.
- W4366375041 hasRelatedWork W3016514588 @default.
- W4366375041 hasRelatedWork W3173182854 @default.
- W4366375041 hasRelatedWork W4220996320 @default.
- W4366375041 hasRelatedWork W4295190261 @default.
- W4366375041 hasRelatedWork W4296990061 @default.
- W4366375041 hasRelatedWork W4312391460 @default.
- W4366375041 hasRelatedWork W4312501200 @default.
- W4366375041 hasRelatedWork W4366224123 @default.
- W4366375041 isParatext "false" @default.
- W4366375041 isRetracted "false" @default.
- W4366375041 workType "article" @default.