Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366376094> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4366376094 abstract "In today's era image retrieval is most emerging trends of digital image processing techniques. Traditional methods for retrieval such as Text and Query based image retrieval of image it will take more time for searching and retrieving images from large datasets. So, to reduce the time for searching and results, in this research work we used deep learning neural network technique is called Autoencoder. Autoencoder is neutral networks which reconstruct images. The proposed work, the image are retrieves similar visual content textures, color and shape of image this technique recognized as “Content Based Image Retrieval (CBIR)”. Current research work, we used the autoencoder technique to form image into feature encoded vector format which will helpful for searching image from larger dataset. Proposed the encoder architecture to evaluate the input image then applied two training approaches pre-train and post train to generate good quality encoded representation. Three autoencoder are used for this research work Simple autoencoder, Deep autoencoder and Convolutional autoencoder. To reduced search indexing time, for extracting similar images from the dataset we used Approximate Nearest Neighbor (ANN) approach. Finally, developed end to end application system for image retrieval on MNIST and CIFER 10 datasets." @default.
- W4366376094 created "2023-04-21" @default.
- W4366376094 creator A5041609239 @default.
- W4366376094 creator A5083889751 @default.
- W4366376094 date "2023-02-24" @default.
- W4366376094 modified "2023-10-05" @default.
- W4366376094 title "Autoencoder for Image Retrieval System using Deep Learning Technique with Tensorflow and Kears" @default.
- W4366376094 cites W2951480690 @default.
- W4366376094 cites W2963626582 @default.
- W4366376094 cites W2993982012 @default.
- W4366376094 cites W3000020348 @default.
- W4366376094 cites W3025767911 @default.
- W4366376094 cites W3039706108 @default.
- W4366376094 cites W3041750913 @default.
- W4366376094 cites W3094236442 @default.
- W4366376094 cites W3133795864 @default.
- W4366376094 cites W4224229700 @default.
- W4366376094 doi "https://doi.org/10.1109/icicacs57338.2023.10099675" @default.
- W4366376094 hasPublicationYear "2023" @default.
- W4366376094 type Work @default.
- W4366376094 citedByCount "1" @default.
- W4366376094 countsByYear W43663760942023 @default.
- W4366376094 crossrefType "proceedings-article" @default.
- W4366376094 hasAuthorship W4366376094A5041609239 @default.
- W4366376094 hasAuthorship W4366376094A5083889751 @default.
- W4366376094 hasConcept C101738243 @default.
- W4366376094 hasConcept C108583219 @default.
- W4366376094 hasConcept C115961682 @default.
- W4366376094 hasConcept C138885662 @default.
- W4366376094 hasConcept C153180895 @default.
- W4366376094 hasConcept C154945302 @default.
- W4366376094 hasConcept C1667742 @default.
- W4366376094 hasConcept C190502265 @default.
- W4366376094 hasConcept C2776401178 @default.
- W4366376094 hasConcept C2780052074 @default.
- W4366376094 hasConcept C31972630 @default.
- W4366376094 hasConcept C41008148 @default.
- W4366376094 hasConcept C41895202 @default.
- W4366376094 hasConcept C75165309 @default.
- W4366376094 hasConcept C81363708 @default.
- W4366376094 hasConceptScore W4366376094C101738243 @default.
- W4366376094 hasConceptScore W4366376094C108583219 @default.
- W4366376094 hasConceptScore W4366376094C115961682 @default.
- W4366376094 hasConceptScore W4366376094C138885662 @default.
- W4366376094 hasConceptScore W4366376094C153180895 @default.
- W4366376094 hasConceptScore W4366376094C154945302 @default.
- W4366376094 hasConceptScore W4366376094C1667742 @default.
- W4366376094 hasConceptScore W4366376094C190502265 @default.
- W4366376094 hasConceptScore W4366376094C2776401178 @default.
- W4366376094 hasConceptScore W4366376094C2780052074 @default.
- W4366376094 hasConceptScore W4366376094C31972630 @default.
- W4366376094 hasConceptScore W4366376094C41008148 @default.
- W4366376094 hasConceptScore W4366376094C41895202 @default.
- W4366376094 hasConceptScore W4366376094C75165309 @default.
- W4366376094 hasConceptScore W4366376094C81363708 @default.
- W4366376094 hasLocation W43663760941 @default.
- W4366376094 hasOpenAccess W4366376094 @default.
- W4366376094 hasPrimaryLocation W43663760941 @default.
- W4366376094 hasRelatedWork W2292254049 @default.
- W4366376094 hasRelatedWork W2669956259 @default.
- W4366376094 hasRelatedWork W2963510064 @default.
- W4366376094 hasRelatedWork W3156786002 @default.
- W4366376094 hasRelatedWork W3208266890 @default.
- W4366376094 hasRelatedWork W4281672036 @default.
- W4366376094 hasRelatedWork W4309224979 @default.
- W4366376094 hasRelatedWork W4312417841 @default.
- W4366376094 hasRelatedWork W4321369474 @default.
- W4366376094 hasRelatedWork W4366376094 @default.
- W4366376094 isParatext "false" @default.
- W4366376094 isRetracted "false" @default.
- W4366376094 workType "article" @default.