Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366376098> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4366376098 abstract "Type 2 diabetes mellitus (T2DM) is a degenerative condition. Beta cell dysfunction worsens with disease progression, leading to elevated blood glucose levels. Over time, untreated type 2 diabetes leads to a plethora of complications and eventually death. When type 2 diabetes (T2DM) is properly controlled, progression can be delayed or even stopped altogether, and in some cases, remission can even occur. Certain risk factors, such as those related to one's nutrition and level of physical activity, can be changed to influence one's prognosis and the rate at which their condition worsens. It is first vital to understand the elements that foretell the speed and direction of T2-DM advancement in order to build efficient intervention and management strategies. In this study, we focus on how to build an ensemble model to categorize people with heart problems. Accuracy for the proposed model is determined by summing the results of all of the learners, who each contribute to the overall accuracy of the model. The dataset chosen for investigation is the Cleveland Heart Dataset acquired from UCI Machine learning repository. Because of the accuracy of the suggested model, heart illness can be diagnosed sooner, reducing the risk of serious consequences or even death. By comparing the results with those of recently announced methods from different researchers, it was observed that the created models offered superior accuracy by 87.5%, sensitivity by 97.3%, and specificity by 98%." @default.
- W4366376098 created "2023-04-21" @default.
- W4366376098 creator A5009531144 @default.
- W4366376098 creator A5022625272 @default.
- W4366376098 creator A5048149984 @default.
- W4366376098 creator A5068070170 @default.
- W4366376098 creator A5071790604 @default.
- W4366376098 date "2023-02-24" @default.
- W4366376098 modified "2023-10-14" @default.
- W4366376098 title "A Collective Machine Learning and Deep Learning Prototypical to Expect Diabetic Retinopathy" @default.
- W4366376098 cites W1989022033 @default.
- W4366376098 cites W2344961857 @default.
- W4366376098 cites W2401571932 @default.
- W4366376098 cites W2767822119 @default.
- W4366376098 cites W2889581859 @default.
- W4366376098 cites W2909713275 @default.
- W4366376098 cites W2914527623 @default.
- W4366376098 cites W2922442184 @default.
- W4366376098 cites W2968700984 @default.
- W4366376098 doi "https://doi.org/10.1109/icicacs57338.2023.10100303" @default.
- W4366376098 hasPublicationYear "2023" @default.
- W4366376098 type Work @default.
- W4366376098 citedByCount "0" @default.
- W4366376098 crossrefType "proceedings-article" @default.
- W4366376098 hasAuthorship W4366376098A5009531144 @default.
- W4366376098 hasAuthorship W4366376098A5022625272 @default.
- W4366376098 hasAuthorship W4366376098A5048149984 @default.
- W4366376098 hasAuthorship W4366376098A5068070170 @default.
- W4366376098 hasAuthorship W4366376098A5071790604 @default.
- W4366376098 hasConcept C108583219 @default.
- W4366376098 hasConcept C118552586 @default.
- W4366376098 hasConcept C119857082 @default.
- W4366376098 hasConcept C126322002 @default.
- W4366376098 hasConcept C134018914 @default.
- W4366376098 hasConcept C154945302 @default.
- W4366376098 hasConcept C177713679 @default.
- W4366376098 hasConcept C179755657 @default.
- W4366376098 hasConcept C2777180221 @default.
- W4366376098 hasConcept C2778313320 @default.
- W4366376098 hasConcept C2779134260 @default.
- W4366376098 hasConcept C2779829184 @default.
- W4366376098 hasConcept C2780665704 @default.
- W4366376098 hasConcept C2910068830 @default.
- W4366376098 hasConcept C41008148 @default.
- W4366376098 hasConcept C555293320 @default.
- W4366376098 hasConcept C71924100 @default.
- W4366376098 hasConcept C94124525 @default.
- W4366376098 hasConceptScore W4366376098C108583219 @default.
- W4366376098 hasConceptScore W4366376098C118552586 @default.
- W4366376098 hasConceptScore W4366376098C119857082 @default.
- W4366376098 hasConceptScore W4366376098C126322002 @default.
- W4366376098 hasConceptScore W4366376098C134018914 @default.
- W4366376098 hasConceptScore W4366376098C154945302 @default.
- W4366376098 hasConceptScore W4366376098C177713679 @default.
- W4366376098 hasConceptScore W4366376098C179755657 @default.
- W4366376098 hasConceptScore W4366376098C2777180221 @default.
- W4366376098 hasConceptScore W4366376098C2778313320 @default.
- W4366376098 hasConceptScore W4366376098C2779134260 @default.
- W4366376098 hasConceptScore W4366376098C2779829184 @default.
- W4366376098 hasConceptScore W4366376098C2780665704 @default.
- W4366376098 hasConceptScore W4366376098C2910068830 @default.
- W4366376098 hasConceptScore W4366376098C41008148 @default.
- W4366376098 hasConceptScore W4366376098C555293320 @default.
- W4366376098 hasConceptScore W4366376098C71924100 @default.
- W4366376098 hasConceptScore W4366376098C94124525 @default.
- W4366376098 hasLocation W43663760981 @default.
- W4366376098 hasOpenAccess W4366376098 @default.
- W4366376098 hasPrimaryLocation W43663760981 @default.
- W4366376098 hasRelatedWork W1484327359 @default.
- W4366376098 hasRelatedWork W2018195085 @default.
- W4366376098 hasRelatedWork W2329268222 @default.
- W4366376098 hasRelatedWork W2388580235 @default.
- W4366376098 hasRelatedWork W2415557665 @default.
- W4366376098 hasRelatedWork W2592221850 @default.
- W4366376098 hasRelatedWork W2907238362 @default.
- W4366376098 hasRelatedWork W2947297366 @default.
- W4366376098 hasRelatedWork W3128762544 @default.
- W4366376098 hasRelatedWork W3165096768 @default.
- W4366376098 isParatext "false" @default.
- W4366376098 isRetracted "false" @default.
- W4366376098 workType "article" @default.