Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366376105> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4366376105 abstract "The examination of medical images has benefited greatly from the use of artificial intelligence. In contrast to deep learning systems, which do feature extraction automatically and without human interaction, traditional computer vision methods rely on manually produced features that are particular to a certain domain. Having access to medical information for automated analysis is another major factor driving the trend towards deep learning. Chest x-ray pictures are processed in order to segment the lungs and identify diseases in this thesis. Due to its cheap cost, ease of capture, and non-invasive nature, chest x-ray is the most often used medical imaging technology. However, automatic diagnosis in chest x-rays is difficult due to (1) the presence of the rib-cage and clavicle bones, which can obscure abnormalities that are located beneath them, and (2) the fuzzy intensity transitions near the lung and heart, dense abnormalities, rib-cages, and clavicle bones, which make the identification of lung contours subtle. In x-ray image processing, the Convolutional Neural Network (CNN) is the most often used deep learning architecture. Because to the enormous number of parameters in deep CNN architectures, intensive computing resources are required to train these models. Additionally, chest x-ray datasets are often rather tiny, and there is always the risk of overfitting when developing a model. In this dissertation, we propose five convolutional neural networks (CNNs) to identify illness and segment the lungs in chest x-rays. New Line, New Line In the first research paper, an adaptive lightweight convolutional neural network (ALCNN) is created to detect pneumothorax with few parameters. The model readjusts the feature calibration channel-wise using the convolutional layer and attention mechanism. The suggested model outperformed state-of-the-art deep models trained using three different transfer learning methods. One notable aspect of the suggested model is that it requires ten times less parameters than the best deep models currently available. The second paper suggests the FocusCovid methodology for identifying COVID-19." @default.
- W4366376105 created "2023-04-21" @default.
- W4366376105 creator A5021374414 @default.
- W4366376105 creator A5031281838 @default.
- W4366376105 creator A5049429131 @default.
- W4366376105 creator A5060143756 @default.
- W4366376105 creator A5069869576 @default.
- W4366376105 date "2023-02-24" @default.
- W4366376105 modified "2023-09-25" @default.
- W4366376105 title "Covid Analysis using Recurrent Neural Network" @default.
- W4366376105 cites W2098366164 @default.
- W4366376105 cites W2534085923 @default.
- W4366376105 cites W3033072986 @default.
- W4366376105 cites W3041493976 @default.
- W4366376105 cites W3047144258 @default.
- W4366376105 cites W3111421574 @default.
- W4366376105 cites W3135675801 @default.
- W4366376105 cites W3161828535 @default.
- W4366376105 cites W3209401229 @default.
- W4366376105 cites W4213457515 @default.
- W4366376105 cites W4214514695 @default.
- W4366376105 cites W4220668093 @default.
- W4366376105 cites W4221108304 @default.
- W4366376105 doi "https://doi.org/10.1109/icicacs57338.2023.10100129" @default.
- W4366376105 hasPublicationYear "2023" @default.
- W4366376105 type Work @default.
- W4366376105 citedByCount "0" @default.
- W4366376105 crossrefType "proceedings-article" @default.
- W4366376105 hasAuthorship W4366376105A5021374414 @default.
- W4366376105 hasAuthorship W4366376105A5031281838 @default.
- W4366376105 hasAuthorship W4366376105A5049429131 @default.
- W4366376105 hasAuthorship W4366376105A5060143756 @default.
- W4366376105 hasAuthorship W4366376105A5069869576 @default.
- W4366376105 hasConcept C108583219 @default.
- W4366376105 hasConcept C119857082 @default.
- W4366376105 hasConcept C153180895 @default.
- W4366376105 hasConcept C154945302 @default.
- W4366376105 hasConcept C22019652 @default.
- W4366376105 hasConcept C41008148 @default.
- W4366376105 hasConcept C50644808 @default.
- W4366376105 hasConcept C52622490 @default.
- W4366376105 hasConcept C81363708 @default.
- W4366376105 hasConceptScore W4366376105C108583219 @default.
- W4366376105 hasConceptScore W4366376105C119857082 @default.
- W4366376105 hasConceptScore W4366376105C153180895 @default.
- W4366376105 hasConceptScore W4366376105C154945302 @default.
- W4366376105 hasConceptScore W4366376105C22019652 @default.
- W4366376105 hasConceptScore W4366376105C41008148 @default.
- W4366376105 hasConceptScore W4366376105C50644808 @default.
- W4366376105 hasConceptScore W4366376105C52622490 @default.
- W4366376105 hasConceptScore W4366376105C81363708 @default.
- W4366376105 hasLocation W43663761051 @default.
- W4366376105 hasOpenAccess W4366376105 @default.
- W4366376105 hasPrimaryLocation W43663761051 @default.
- W4366376105 hasRelatedWork W2279398222 @default.
- W4366376105 hasRelatedWork W2732542196 @default.
- W4366376105 hasRelatedWork W2997709384 @default.
- W4366376105 hasRelatedWork W3081496756 @default.
- W4366376105 hasRelatedWork W3099765033 @default.
- W4366376105 hasRelatedWork W4220996320 @default.
- W4366376105 hasRelatedWork W4283701629 @default.
- W4366376105 hasRelatedWork W4299822940 @default.
- W4366376105 hasRelatedWork W4309224979 @default.
- W4366376105 hasRelatedWork W4313289428 @default.
- W4366376105 isParatext "false" @default.
- W4366376105 isRetracted "false" @default.
- W4366376105 workType "article" @default.