Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366376374> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4366376374 abstract "The most frequent malignancy in women now a days is breast cancer particularly in India. To predict DCIS( Ductal Carcinoma in Situ) various trained model of supervised learning algorithms like k-Nearest neighbor, Decision Tree classifiers, Random forest classifiers are used by various researchers. In unsupervised learning model K-means algorithm is also used to classify the clinical characteristics, mammographic findings, and images features. In this paper K-means (unsupervised learning) idea has been extended to combine the Gaussian Mixture model (GMM) for better accuracy. The EM (Expectation Maximization) based GMM is combined with k-means for flexibility in cluster shape by density estimator to overcome the problems of k-means algorithm. The simulated results show the competence of the proposed model to predict for the early diagnosis of DCIS (the early stage of the breast cancer). Scikit-learn, Pandas, Matplotlib and Numpy modules of Python have been used for breast cancer datasets, simulation and results." @default.
- W4366376374 created "2023-04-21" @default.
- W4366376374 creator A5047821075 @default.
- W4366376374 creator A5057481223 @default.
- W4366376374 creator A5067593811 @default.
- W4366376374 date "2023-02-24" @default.
- W4366376374 modified "2023-09-26" @default.
- W4366376374 title "Combining K-Means and Gaussian Mixture Model for better accuracy in prediction of Ductal Carcinoma in Situ (DCIS)- Breast Cancer" @default.
- W4366376374 cites W2108876167 @default.
- W4366376374 cites W2548468541 @default.
- W4366376374 cites W2735927662 @default.
- W4366376374 cites W2888934687 @default.
- W4366376374 cites W2896886167 @default.
- W4366376374 cites W2905713042 @default.
- W4366376374 cites W2907422271 @default.
- W4366376374 cites W2907475719 @default.
- W4366376374 cites W2929959569 @default.
- W4366376374 cites W2952319621 @default.
- W4366376374 cites W2998229104 @default.
- W4366376374 cites W3003199121 @default.
- W4366376374 cites W3088539645 @default.
- W4366376374 cites W3130908143 @default.
- W4366376374 cites W3162910376 @default.
- W4366376374 cites W3163373333 @default.
- W4366376374 cites W3177157473 @default.
- W4366376374 cites W3198421406 @default.
- W4366376374 cites W3201361504 @default.
- W4366376374 cites W3208462051 @default.
- W4366376374 cites W3216327661 @default.
- W4366376374 cites W4206686509 @default.
- W4366376374 cites W4241794095 @default.
- W4366376374 doi "https://doi.org/10.1109/icicacs57338.2023.10099971" @default.
- W4366376374 hasPublicationYear "2023" @default.
- W4366376374 type Work @default.
- W4366376374 citedByCount "0" @default.
- W4366376374 crossrefType "proceedings-article" @default.
- W4366376374 hasAuthorship W4366376374A5047821075 @default.
- W4366376374 hasAuthorship W4366376374A5057481223 @default.
- W4366376374 hasAuthorship W4366376374A5067593811 @default.
- W4366376374 hasConcept C105795698 @default.
- W4366376374 hasConcept C111919701 @default.
- W4366376374 hasConcept C119857082 @default.
- W4366376374 hasConcept C121608353 @default.
- W4366376374 hasConcept C126322002 @default.
- W4366376374 hasConcept C153180895 @default.
- W4366376374 hasConcept C154945302 @default.
- W4366376374 hasConcept C169258074 @default.
- W4366376374 hasConcept C182081679 @default.
- W4366376374 hasConcept C2780862961 @default.
- W4366376374 hasConcept C33923547 @default.
- W4366376374 hasConcept C41008148 @default.
- W4366376374 hasConcept C49781872 @default.
- W4366376374 hasConcept C519991488 @default.
- W4366376374 hasConcept C530470458 @default.
- W4366376374 hasConcept C61224824 @default.
- W4366376374 hasConcept C71924100 @default.
- W4366376374 hasConcept C84525736 @default.
- W4366376374 hasConceptScore W4366376374C105795698 @default.
- W4366376374 hasConceptScore W4366376374C111919701 @default.
- W4366376374 hasConceptScore W4366376374C119857082 @default.
- W4366376374 hasConceptScore W4366376374C121608353 @default.
- W4366376374 hasConceptScore W4366376374C126322002 @default.
- W4366376374 hasConceptScore W4366376374C153180895 @default.
- W4366376374 hasConceptScore W4366376374C154945302 @default.
- W4366376374 hasConceptScore W4366376374C169258074 @default.
- W4366376374 hasConceptScore W4366376374C182081679 @default.
- W4366376374 hasConceptScore W4366376374C2780862961 @default.
- W4366376374 hasConceptScore W4366376374C33923547 @default.
- W4366376374 hasConceptScore W4366376374C41008148 @default.
- W4366376374 hasConceptScore W4366376374C49781872 @default.
- W4366376374 hasConceptScore W4366376374C519991488 @default.
- W4366376374 hasConceptScore W4366376374C530470458 @default.
- W4366376374 hasConceptScore W4366376374C61224824 @default.
- W4366376374 hasConceptScore W4366376374C71924100 @default.
- W4366376374 hasConceptScore W4366376374C84525736 @default.
- W4366376374 hasLocation W43663763741 @default.
- W4366376374 hasOpenAccess W4366376374 @default.
- W4366376374 hasPrimaryLocation W43663763741 @default.
- W4366376374 hasRelatedWork W3210877509 @default.
- W4366376374 hasRelatedWork W4200057378 @default.
- W4366376374 hasRelatedWork W4200196661 @default.
- W4366376374 hasRelatedWork W4205958290 @default.
- W4366376374 hasRelatedWork W4249746146 @default.
- W4366376374 hasRelatedWork W4283016678 @default.
- W4366376374 hasRelatedWork W4285225238 @default.
- W4366376374 hasRelatedWork W4312949351 @default.
- W4366376374 hasRelatedWork W4318350883 @default.
- W4366376374 hasRelatedWork W4320483443 @default.
- W4366376374 isParatext "false" @default.
- W4366376374 isRetracted "false" @default.
- W4366376374 workType "article" @default.