Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366376576> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4366376576 abstract "Social networking platforms, online news outlets, and weblog hosting services continue to expand, and with them come an increasing number of user-generated content contributions such product evaluations, comments on recent articles, and more. Products, movies, shopping sites, and review sites are common areas for customer feedback. The sheer volume and rate of growth of material that expresses opinions is becoming a burden on manufacturers who must manually categorise this data. Also, the perspective on entities at the level of aspects is expected by the public. It is for this reason that an automated sentiment analyzer must be built, one that can detect the bipolar and multipolar sentiment polarity of documents and/or aspects. People's ability to voice their opinions openly in public has greatly increased with the advent of various social networking apps. As a result, this helps to further the field of automated emotional analysis by providing a wealth of data on which to base analyses of people's feelings. User review categorization and analysis has emerged as an important part of sentiment analysis in recent years. Opinion mining is used to determine the degree of positivity or negativity in each user review posted on a social network. Numbers, star ratings, and descriptive text are the three polarity indications in a review. The sentiments of the public have been analysed using a wide variety of machine learning methods, but these methods often fall short in key areas such as classification accuracy, precision, recall, and F-measure due to pre-existing classification problems such as the two-class problem, overfitting, and parallel processing. The primary goal of the study is to create a fully automated system that can analyse a massive dataset of movie reviews using aspect-based SA or OM. We use natural language processing to tally up the good, bad, and ugly reviews. The research enhances advertising efforts and guides customers to the most suitable products. In this study, we use a variety of machine learning and swarm intelligence optimization techniques to the problem of determining the tone of movie reviews. Profits are increased and product failures are decreased thanks to this study for a wide range of businesses. The effectiveness of these procedures has been measured using MATLAB data from critical assessments of movies. The simulation results demonstrate that the proposed HIRVM scheme outperforms the state-of-the-art sentiment analysis schemes like HKELM, ID3, and J48 with respect to accuracy (96.82 percent), sensitivity (97.1 percent), specificity (91.2 percent), precision (96.2 percent), recall (90.2 percent), and F-Measure (89.5 percent). As compared to conventional methods, the suggested HIRVM significantly reduces both processing time (28.14s) and processing cost." @default.
- W4366376576 created "2023-04-21" @default.
- W4366376576 creator A5004834795 @default.
- W4366376576 creator A5005241139 @default.
- W4366376576 creator A5015250351 @default.
- W4366376576 creator A5026370667 @default.
- W4366376576 creator A5029688969 @default.
- W4366376576 date "2023-02-24" @default.
- W4366376576 modified "2023-10-18" @default.
- W4366376576 title "Machine Learning Based Sentiment Analysis and Swarm Intelligence" @default.
- W4366376576 cites W1501706198 @default.
- W4366376576 cites W2019759670 @default.
- W4366376576 cites W2031998113 @default.
- W4366376576 cites W2085582472 @default.
- W4366376576 cites W2401379394 @default.
- W4366376576 cites W2891273960 @default.
- W4366376576 cites W2964236337 @default.
- W4366376576 cites W3205379079 @default.
- W4366376576 cites W4200123695 @default.
- W4366376576 cites W4214605467 @default.
- W4366376576 cites W4214692777 @default.
- W4366376576 cites W4225637082 @default.
- W4366376576 doi "https://doi.org/10.1109/icicacs57338.2023.10100262" @default.
- W4366376576 hasPublicationYear "2023" @default.
- W4366376576 type Work @default.
- W4366376576 citedByCount "0" @default.
- W4366376576 crossrefType "proceedings-article" @default.
- W4366376576 hasAuthorship W4366376576A5004834795 @default.
- W4366376576 hasAuthorship W4366376576A5005241139 @default.
- W4366376576 hasAuthorship W4366376576A5015250351 @default.
- W4366376576 hasAuthorship W4366376576A5026370667 @default.
- W4366376576 hasAuthorship W4366376576A5029688969 @default.
- W4366376576 hasConcept C12713177 @default.
- W4366376576 hasConcept C134698397 @default.
- W4366376576 hasConcept C136197465 @default.
- W4366376576 hasConcept C136764020 @default.
- W4366376576 hasConcept C154945302 @default.
- W4366376576 hasConcept C17744445 @default.
- W4366376576 hasConcept C199539241 @default.
- W4366376576 hasConcept C202444582 @default.
- W4366376576 hasConcept C2522767166 @default.
- W4366376576 hasConcept C2524010 @default.
- W4366376576 hasConcept C33923547 @default.
- W4366376576 hasConcept C41008148 @default.
- W4366376576 hasConcept C4727928 @default.
- W4366376576 hasConcept C518677369 @default.
- W4366376576 hasConcept C66402592 @default.
- W4366376576 hasConcept C90673727 @default.
- W4366376576 hasConcept C94124525 @default.
- W4366376576 hasConcept C94625758 @default.
- W4366376576 hasConcept C9652623 @default.
- W4366376576 hasConceptScore W4366376576C12713177 @default.
- W4366376576 hasConceptScore W4366376576C134698397 @default.
- W4366376576 hasConceptScore W4366376576C136197465 @default.
- W4366376576 hasConceptScore W4366376576C136764020 @default.
- W4366376576 hasConceptScore W4366376576C154945302 @default.
- W4366376576 hasConceptScore W4366376576C17744445 @default.
- W4366376576 hasConceptScore W4366376576C199539241 @default.
- W4366376576 hasConceptScore W4366376576C202444582 @default.
- W4366376576 hasConceptScore W4366376576C2522767166 @default.
- W4366376576 hasConceptScore W4366376576C2524010 @default.
- W4366376576 hasConceptScore W4366376576C33923547 @default.
- W4366376576 hasConceptScore W4366376576C41008148 @default.
- W4366376576 hasConceptScore W4366376576C4727928 @default.
- W4366376576 hasConceptScore W4366376576C518677369 @default.
- W4366376576 hasConceptScore W4366376576C66402592 @default.
- W4366376576 hasConceptScore W4366376576C90673727 @default.
- W4366376576 hasConceptScore W4366376576C94124525 @default.
- W4366376576 hasConceptScore W4366376576C94625758 @default.
- W4366376576 hasConceptScore W4366376576C9652623 @default.
- W4366376576 hasLocation W43663765761 @default.
- W4366376576 hasOpenAccess W4366376576 @default.
- W4366376576 hasPrimaryLocation W43663765761 @default.
- W4366376576 hasRelatedWork W2748952813 @default.
- W4366376576 hasRelatedWork W2782377450 @default.
- W4366376576 hasRelatedWork W2800619668 @default.
- W4366376576 hasRelatedWork W2936162775 @default.
- W4366376576 hasRelatedWork W3109116358 @default.
- W4366376576 hasRelatedWork W3191736742 @default.
- W4366376576 hasRelatedWork W4213023620 @default.
- W4366376576 hasRelatedWork W4245643476 @default.
- W4366376576 hasRelatedWork W4285232681 @default.
- W4366376576 hasRelatedWork W4362544966 @default.
- W4366376576 isParatext "false" @default.
- W4366376576 isRetracted "false" @default.
- W4366376576 workType "article" @default.