Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366376596> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4366376596 abstract "Pneumonia is a potentially fatal disease, especially for children, caused by lung infections from either bacteria or viruses. People who live in some impoverished countries, particularly infants, run a significant danger from it. The diagnosis of pneumonia can often be made through examination of chest X-ray data, but when the lungs have undergone surgery, fluid buildup, or got affected by lung cancer, it becomes difficult to diagnose pneumonia. In these cases, using Computer-Assisted Diagnosis can aid physicians in the diagnosis process. This study proposes a new deep learning model by combining the Xception and VGG16 models, two different transfer learning techniques, to detect pneumonia. To optimize the image data, this study employs image normalization and augmentation techniques as part of the image pre-processing. To create our suggested model, we first picked the two separate transfer learning models, Xception and VGG16, concatenated them, then flattened the concatenated model, added an extra LSTM layer, then added some additional dense layers, and lastly added a sigmoid layer. 5216 images were accumulated to prepare the model training in the “NORMAL” category and the “PNEUMONIA” category. From these two classes, a total of 624 images were used to test the results. The proposed model reached 92.31% accuracy, 93.5% precision, 90.5% recall, and 91.5% f1-score. The thorough exploratory study demonstrates that the suggested strategy works for a wide range of datasets." @default.
- W4366376596 created "2023-04-21" @default.
- W4366376596 creator A5020535535 @default.
- W4366376596 creator A5047478045 @default.
- W4366376596 date "2023-02-23" @default.
- W4366376596 modified "2023-10-01" @default.
- W4366376596 title "Combination of the Features of Pre-trained Xception and VGG16 Models to Identify Childhood Pneumonia from Chest X-Ray Images" @default.
- W4366376596 cites W1497591368 @default.
- W4366376596 cites W2092603650 @default.
- W4366376596 cites W2130848906 @default.
- W4366376596 cites W2141619730 @default.
- W4366376596 cites W2151920090 @default.
- W4366376596 cites W2784133841 @default.
- W4366376596 cites W2948666538 @default.
- W4366376596 cites W2952817546 @default.
- W4366376596 cites W2956123709 @default.
- W4366376596 cites W2959687571 @default.
- W4366376596 cites W2982533493 @default.
- W4366376596 cites W3017855299 @default.
- W4366376596 cites W3135347465 @default.
- W4366376596 cites W3208458519 @default.
- W4366376596 cites W3212912762 @default.
- W4366376596 cites W4224271142 @default.
- W4366376596 cites W4323060044 @default.
- W4366376596 doi "https://doi.org/10.1109/ecce57851.2023.10101489" @default.
- W4366376596 hasPublicationYear "2023" @default.
- W4366376596 type Work @default.
- W4366376596 citedByCount "1" @default.
- W4366376596 countsByYear W43663765962023 @default.
- W4366376596 crossrefType "proceedings-article" @default.
- W4366376596 hasAuthorship W4366376596A5020535535 @default.
- W4366376596 hasAuthorship W4366376596A5047478045 @default.
- W4366376596 hasConcept C108583219 @default.
- W4366376596 hasConcept C126322002 @default.
- W4366376596 hasConcept C126838900 @default.
- W4366376596 hasConcept C150899416 @default.
- W4366376596 hasConcept C153180895 @default.
- W4366376596 hasConcept C154945302 @default.
- W4366376596 hasConcept C2777914695 @default.
- W4366376596 hasConcept C41008148 @default.
- W4366376596 hasConcept C71924100 @default.
- W4366376596 hasConceptScore W4366376596C108583219 @default.
- W4366376596 hasConceptScore W4366376596C126322002 @default.
- W4366376596 hasConceptScore W4366376596C126838900 @default.
- W4366376596 hasConceptScore W4366376596C150899416 @default.
- W4366376596 hasConceptScore W4366376596C153180895 @default.
- W4366376596 hasConceptScore W4366376596C154945302 @default.
- W4366376596 hasConceptScore W4366376596C2777914695 @default.
- W4366376596 hasConceptScore W4366376596C41008148 @default.
- W4366376596 hasConceptScore W4366376596C71924100 @default.
- W4366376596 hasLocation W43663765961 @default.
- W4366376596 hasOpenAccess W4366376596 @default.
- W4366376596 hasPrimaryLocation W43663765961 @default.
- W4366376596 hasRelatedWork W2889705046 @default.
- W4366376596 hasRelatedWork W3018421652 @default.
- W4366376596 hasRelatedWork W3031818154 @default.
- W4366376596 hasRelatedWork W3091976719 @default.
- W4366376596 hasRelatedWork W3192840557 @default.
- W4366376596 hasRelatedWork W3195938642 @default.
- W4366376596 hasRelatedWork W4213299466 @default.
- W4366376596 hasRelatedWork W4292874285 @default.
- W4366376596 hasRelatedWork W4312200629 @default.
- W4366376596 hasRelatedWork W4382286161 @default.
- W4366376596 isParatext "false" @default.
- W4366376596 isRetracted "false" @default.
- W4366376596 workType "article" @default.