Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366376918> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4366376918 abstract "Cardiovascular diseases (CVDs), which include heart disorders, are the most prevalent and significant causes of death worldwide, including Bangladesh. Blood artery problems, rhythm issues, chest pain, heart attacks, strokes, and erratic blood pressure are a few of these. In Bangladesh, cardiovascular disease is the main factor in both male and female fatalities. More than 80% of CVD deaths are caused by heart disease and strokes, which are the predominant causes. To be able to examine the effectiveness of the various models, this research article explains the underlying methods as Support vector machines (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR), Random Forest (RF), Decision Tree (DT), and XGBoost (XGB), wherein Random Forest perform better when their hyperparameters are tuned (RandomizedSearchCV). There suggested ensemble technique such as Bagging, Voting, Stacking. Additionally, it is suggested that a hybrid strategy using Bagging and stacking ensemble approaches can boost the predictability of cardiovascular disease. For this analysis of patient performance, we used a dataset from Kaggle that comprises of 70,000 unique data values. According to the experiment's findings, the proposed model had the best disease prediction accuracy, coming in at 84.03%." @default.
- W4366376918 created "2023-04-21" @default.
- W4366376918 creator A5006075870 @default.
- W4366376918 creator A5013822946 @default.
- W4366376918 creator A5019518830 @default.
- W4366376918 creator A5061389356 @default.
- W4366376918 creator A5067958182 @default.
- W4366376918 creator A5076905418 @default.
- W4366376918 date "2023-02-23" @default.
- W4366376918 modified "2023-09-30" @default.
- W4366376918 title "An Improved Framework for Reliable Cardiovascular Disease Prediction Using Hybrid Ensemble Learning" @default.
- W4366376918 cites W2174756220 @default.
- W4366376918 cites W2278838777 @default.
- W4366376918 cites W2503361601 @default.
- W4366376918 cites W2585385891 @default.
- W4366376918 cites W2769199200 @default.
- W4366376918 cites W2916066245 @default.
- W4366376918 cites W2952312197 @default.
- W4366376918 cites W2991899257 @default.
- W4366376918 cites W3113215878 @default.
- W4366376918 cites W3194905393 @default.
- W4366376918 cites W4214615649 @default.
- W4366376918 cites W4309294114 @default.
- W4366376918 doi "https://doi.org/10.1109/ecce57851.2023.10101564" @default.
- W4366376918 hasPublicationYear "2023" @default.
- W4366376918 type Work @default.
- W4366376918 citedByCount "2" @default.
- W4366376918 countsByYear W43663769182023 @default.
- W4366376918 crossrefType "proceedings-article" @default.
- W4366376918 hasAuthorship W4366376918A5006075870 @default.
- W4366376918 hasAuthorship W4366376918A5013822946 @default.
- W4366376918 hasAuthorship W4366376918A5019518830 @default.
- W4366376918 hasAuthorship W4366376918A5061389356 @default.
- W4366376918 hasAuthorship W4366376918A5067958182 @default.
- W4366376918 hasAuthorship W4366376918A5076905418 @default.
- W4366376918 hasConcept C119857082 @default.
- W4366376918 hasConcept C119898033 @default.
- W4366376918 hasConcept C12267149 @default.
- W4366376918 hasConcept C126322002 @default.
- W4366376918 hasConcept C151956035 @default.
- W4366376918 hasConcept C153668964 @default.
- W4366376918 hasConcept C154945302 @default.
- W4366376918 hasConcept C169258074 @default.
- W4366376918 hasConcept C2779134260 @default.
- W4366376918 hasConcept C41008148 @default.
- W4366376918 hasConcept C45942800 @default.
- W4366376918 hasConcept C50644808 @default.
- W4366376918 hasConcept C71924100 @default.
- W4366376918 hasConcept C84525736 @default.
- W4366376918 hasConcept C8642999 @default.
- W4366376918 hasConceptScore W4366376918C119857082 @default.
- W4366376918 hasConceptScore W4366376918C119898033 @default.
- W4366376918 hasConceptScore W4366376918C12267149 @default.
- W4366376918 hasConceptScore W4366376918C126322002 @default.
- W4366376918 hasConceptScore W4366376918C151956035 @default.
- W4366376918 hasConceptScore W4366376918C153668964 @default.
- W4366376918 hasConceptScore W4366376918C154945302 @default.
- W4366376918 hasConceptScore W4366376918C169258074 @default.
- W4366376918 hasConceptScore W4366376918C2779134260 @default.
- W4366376918 hasConceptScore W4366376918C41008148 @default.
- W4366376918 hasConceptScore W4366376918C45942800 @default.
- W4366376918 hasConceptScore W4366376918C50644808 @default.
- W4366376918 hasConceptScore W4366376918C71924100 @default.
- W4366376918 hasConceptScore W4366376918C84525736 @default.
- W4366376918 hasConceptScore W4366376918C8642999 @default.
- W4366376918 hasLocation W43663769181 @default.
- W4366376918 hasOpenAccess W4366376918 @default.
- W4366376918 hasPrimaryLocation W43663769181 @default.
- W4366376918 hasRelatedWork W2111761681 @default.
- W4366376918 hasRelatedWork W4205958290 @default.
- W4366376918 hasRelatedWork W4281846282 @default.
- W4366376918 hasRelatedWork W4293069612 @default.
- W4366376918 hasRelatedWork W4301184376 @default.
- W4366376918 hasRelatedWork W4311248666 @default.
- W4366376918 hasRelatedWork W4312122658 @default.
- W4366376918 hasRelatedWork W4312962200 @default.
- W4366376918 hasRelatedWork W4320483443 @default.
- W4366376918 hasRelatedWork W4321636153 @default.
- W4366376918 isParatext "false" @default.
- W4366376918 isRetracted "false" @default.
- W4366376918 workType "article" @default.