Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366377483> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4366377483 abstract "Network traffic is vulnerable to attacks by hackers and threat actors. There are varieties of attacks which can be both passive and aggressive which used to threaten network security and privacy. For identifying such attacks fast and precisely, a strong Intrusion Detection System is required. It detects attacks by widely inspecting each packet in the network in real-time. Hence network traffic analysis is important for enhancing network security which requires the use of machine learning techniques for diagnosis at machine speed. To seize complicated patterns in data, machine learning needs a large amount of data. Thus this article focuses on the NSL-KDD datasets, which eliminate certain redundant and more frequent records from the 1999 KDD Cup dataset that can still be used in machine learning techniques that are the primary tools for network traffic analysis and anomaly detection. Initially, features to be extracted from network traffic are pre-processed, which often involves the use of numerous mathematical techniques like removing unnecessary or undesired features to assemble the data for a machine learning model. Then the selected features are used for training the proposed models and a binary classification technique is used for prediction of normal or attack type. Eventually, the overall performance accuracy and error rate of our model is evaluated. Thus network traffic analysis will be used to expose invasions and forbid network attacks." @default.
- W4366377483 created "2023-04-21" @default.
- W4366377483 creator A5002439257 @default.
- W4366377483 creator A5027777741 @default.
- W4366377483 creator A5054861566 @default.
- W4366377483 creator A5084367389 @default.
- W4366377483 date "2023-02-09" @default.
- W4366377483 modified "2023-10-14" @default.
- W4366377483 title "A Hybrid feature extraction method with machine learning for detecting the presence of network attacks" @default.
- W4366377483 cites W2559177823 @default.
- W4366377483 cites W2899633196 @default.
- W4366377483 cites W2913600181 @default.
- W4366377483 cites W2938115382 @default.
- W4366377483 cites W2970405700 @default.
- W4366377483 cites W2981026269 @default.
- W4366377483 cites W2995026345 @default.
- W4366377483 cites W3111730645 @default.
- W4366377483 cites W3122423129 @default.
- W4366377483 cites W3126814579 @default.
- W4366377483 cites W3129321264 @default.
- W4366377483 cites W3160954170 @default.
- W4366377483 cites W3161774976 @default.
- W4366377483 cites W3174242974 @default.
- W4366377483 cites W3203436613 @default.
- W4366377483 cites W4206325813 @default.
- W4366377483 cites W4206627143 @default.
- W4366377483 cites W4293095071 @default.
- W4366377483 cites W4308628413 @default.
- W4366377483 cites W4311277547 @default.
- W4366377483 cites W4312728551 @default.
- W4366377483 doi "https://doi.org/10.1109/iciscois56541.2023.10100339" @default.
- W4366377483 hasPublicationYear "2023" @default.
- W4366377483 type Work @default.
- W4366377483 citedByCount "0" @default.
- W4366377483 crossrefType "proceedings-article" @default.
- W4366377483 hasAuthorship W4366377483A5002439257 @default.
- W4366377483 hasAuthorship W4366377483A5027777741 @default.
- W4366377483 hasAuthorship W4366377483A5054861566 @default.
- W4366377483 hasAuthorship W4366377483A5084367389 @default.
- W4366377483 hasConcept C119857082 @default.
- W4366377483 hasConcept C124101348 @default.
- W4366377483 hasConcept C138885662 @default.
- W4366377483 hasConcept C154945302 @default.
- W4366377483 hasConcept C158379750 @default.
- W4366377483 hasConcept C169988225 @default.
- W4366377483 hasConcept C182590292 @default.
- W4366377483 hasConcept C2776401178 @default.
- W4366377483 hasConcept C35525427 @default.
- W4366377483 hasConcept C38652104 @default.
- W4366377483 hasConcept C41008148 @default.
- W4366377483 hasConcept C41895202 @default.
- W4366377483 hasConcept C52622490 @default.
- W4366377483 hasConcept C739882 @default.
- W4366377483 hasConcept C86844869 @default.
- W4366377483 hasConceptScore W4366377483C119857082 @default.
- W4366377483 hasConceptScore W4366377483C124101348 @default.
- W4366377483 hasConceptScore W4366377483C138885662 @default.
- W4366377483 hasConceptScore W4366377483C154945302 @default.
- W4366377483 hasConceptScore W4366377483C158379750 @default.
- W4366377483 hasConceptScore W4366377483C169988225 @default.
- W4366377483 hasConceptScore W4366377483C182590292 @default.
- W4366377483 hasConceptScore W4366377483C2776401178 @default.
- W4366377483 hasConceptScore W4366377483C35525427 @default.
- W4366377483 hasConceptScore W4366377483C38652104 @default.
- W4366377483 hasConceptScore W4366377483C41008148 @default.
- W4366377483 hasConceptScore W4366377483C41895202 @default.
- W4366377483 hasConceptScore W4366377483C52622490 @default.
- W4366377483 hasConceptScore W4366377483C739882 @default.
- W4366377483 hasConceptScore W4366377483C86844869 @default.
- W4366377483 hasLocation W43663774831 @default.
- W4366377483 hasOpenAccess W4366377483 @default.
- W4366377483 hasPrimaryLocation W43663774831 @default.
- W4366377483 hasRelatedWork W1521770704 @default.
- W4366377483 hasRelatedWork W1569518864 @default.
- W4366377483 hasRelatedWork W2118020642 @default.
- W4366377483 hasRelatedWork W2166715167 @default.
- W4366377483 hasRelatedWork W2362542061 @default.
- W4366377483 hasRelatedWork W2363068348 @default.
- W4366377483 hasRelatedWork W2368252263 @default.
- W4366377483 hasRelatedWork W2377356555 @default.
- W4366377483 hasRelatedWork W2782351397 @default.
- W4366377483 hasRelatedWork W2988433590 @default.
- W4366377483 isParatext "false" @default.
- W4366377483 isRetracted "false" @default.
- W4366377483 workType "article" @default.