Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366378110> ?p ?o ?g. }
- W4366378110 endingPage "4194" @default.
- W4366378110 startingPage "4180" @default.
- W4366378110 abstract "Land surface temperature (LST) plays a crucial role in the energy and water cycles of the Earth's climate system. The uncertainty of LST retrieval from satellites is a fundamental and long-standing issue, especially in plateau areas (such as the Tibetan Plateau (TP)), due to its high altitude, unique hydrometeorological conditions, and complex underlying surfaces. To improve the accuracy of LST retrieval over the TP, different methods, including the single channel (SC) algorithm, the split-window (SW) algorithm, and four machine learning (ML) models, were used to retrieve the LST based on SLSTR data in this study. The validation results indicated that the RMSEs of the LSTs retrieved by the SC and SW algorithms were 3.48 and 2.64 K, respectively, which shows better performance than the official SLSTR LST products (5.23 K). In addition, the random forest (RF) model has the highest accuracy among the four ML models, with an RMSE of 3.26 K. By comparing the performance of various methods, the SW algorithm is more stable and reliable for LST retrieval over the TP. In addition, the accurate spatiotemporal distribution of the LST based on the SW algorithm was also analyzed, which would benefit the understanding of the physical processes of energy and water cycles over the TP." @default.
- W4366378110 created "2023-04-21" @default.
- W4366378110 creator A5022941473 @default.
- W4366378110 creator A5023435305 @default.
- W4366378110 creator A5030846097 @default.
- W4366378110 creator A5037920559 @default.
- W4366378110 creator A5080128964 @default.
- W4366378110 creator A5087478830 @default.
- W4366378110 date "2023-01-01" @default.
- W4366378110 modified "2023-10-14" @default.
- W4366378110 title "Estimation of Land Surface Temperature Over the Tibetan Plateau Based on Sentinel-3 SLSTR Data" @default.
- W4366378110 cites W1965737830 @default.
- W4366378110 cites W1978843980 @default.
- W4366378110 cites W2009619252 @default.
- W4366378110 cites W2011947156 @default.
- W4366378110 cites W2021521044 @default.
- W4366378110 cites W2026337749 @default.
- W4366378110 cites W2027756597 @default.
- W4366378110 cites W2031755146 @default.
- W4366378110 cites W2033600080 @default.
- W4366378110 cites W2043579401 @default.
- W4366378110 cites W2056093888 @default.
- W4366378110 cites W2057390839 @default.
- W4366378110 cites W2057746737 @default.
- W4366378110 cites W2073201099 @default.
- W4366378110 cites W2075573792 @default.
- W4366378110 cites W2078478034 @default.
- W4366378110 cites W2107680164 @default.
- W4366378110 cites W2137825665 @default.
- W4366378110 cites W2153544489 @default.
- W4366378110 cites W2156049446 @default.
- W4366378110 cites W2158555077 @default.
- W4366378110 cites W2161532325 @default.
- W4366378110 cites W2169278316 @default.
- W4366378110 cites W2188200382 @default.
- W4366378110 cites W2188767531 @default.
- W4366378110 cites W2318700468 @default.
- W4366378110 cites W2564039347 @default.
- W4366378110 cites W2615319340 @default.
- W4366378110 cites W2748986883 @default.
- W4366378110 cites W2766039791 @default.
- W4366378110 cites W2766784875 @default.
- W4366378110 cites W2791437969 @default.
- W4366378110 cites W2794268689 @default.
- W4366378110 cites W2899363336 @default.
- W4366378110 cites W2919424886 @default.
- W4366378110 cites W2921737793 @default.
- W4366378110 cites W2943565958 @default.
- W4366378110 cites W2954278476 @default.
- W4366378110 cites W3008345042 @default.
- W4366378110 cites W3008439211 @default.
- W4366378110 cites W3021660940 @default.
- W4366378110 cites W3024727387 @default.
- W4366378110 cites W3034422010 @default.
- W4366378110 cites W3034798086 @default.
- W4366378110 cites W3046590992 @default.
- W4366378110 cites W3084009726 @default.
- W4366378110 cites W3110060100 @default.
- W4366378110 cites W3124539583 @default.
- W4366378110 cites W3128532228 @default.
- W4366378110 cites W3155993469 @default.
- W4366378110 cites W3197143060 @default.
- W4366378110 cites W3197325378 @default.
- W4366378110 cites W4283714967 @default.
- W4366378110 doi "https://doi.org/10.1109/jstars.2023.3268326" @default.
- W4366378110 hasPublicationYear "2023" @default.
- W4366378110 type Work @default.
- W4366378110 citedByCount "1" @default.
- W4366378110 countsByYear W43663781102023 @default.
- W4366378110 crossrefType "journal-article" @default.
- W4366378110 hasAuthorship W4366378110A5022941473 @default.
- W4366378110 hasAuthorship W4366378110A5023435305 @default.
- W4366378110 hasAuthorship W4366378110A5030846097 @default.
- W4366378110 hasAuthorship W4366378110A5037920559 @default.
- W4366378110 hasAuthorship W4366378110A5080128964 @default.
- W4366378110 hasAuthorship W4366378110A5087478830 @default.
- W4366378110 hasBestOaLocation W43663781101 @default.
- W4366378110 hasConcept C100725284 @default.
- W4366378110 hasConcept C107054158 @default.
- W4366378110 hasConcept C11413529 @default.
- W4366378110 hasConcept C121332964 @default.
- W4366378110 hasConcept C127313418 @default.
- W4366378110 hasConcept C134306372 @default.
- W4366378110 hasConcept C153294291 @default.
- W4366378110 hasConcept C154945302 @default.
- W4366378110 hasConcept C169258074 @default.
- W4366378110 hasConcept C2780030769 @default.
- W4366378110 hasConcept C33923547 @default.
- W4366378110 hasConcept C39432304 @default.
- W4366378110 hasConcept C41008148 @default.
- W4366378110 hasConcept C62649853 @default.
- W4366378110 hasConceptScore W4366378110C100725284 @default.
- W4366378110 hasConceptScore W4366378110C107054158 @default.
- W4366378110 hasConceptScore W4366378110C11413529 @default.
- W4366378110 hasConceptScore W4366378110C121332964 @default.
- W4366378110 hasConceptScore W4366378110C127313418 @default.
- W4366378110 hasConceptScore W4366378110C134306372 @default.
- W4366378110 hasConceptScore W4366378110C153294291 @default.