Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366384357> ?p ?o ?g. }
- W4366384357 endingPage "113567" @default.
- W4366384357 startingPage "113567" @default.
- W4366384357 abstract "Micronutrient malnutrition is a global challenge affecting >2 billion people, in particular those with a crop-based diet and limited access to nutrient-rich food sources. Conventional methods for measuring the crop nutrients such as wet chemical analysis of grains are time-consuming and cost-prohibitive and, consequently, unsuitable for the consistent quantification of nutrients across space and time. In this study, we propose a new method that is using PRecursore IperSpettrale della Missione Applicativa (PRISMA) and Sentinel-2 images to estimate the nutrient concentrations of crop grains before harvest. We collected grain samples for corn, rice, soybean, and wheat from a farm situated in Italy and measured their nutrient concentrations in the lab. These measurements together with the PRISMA and Sentinel-2 images acquired at the main phases of crop development (vegetative, reproductive, maturity) were used as input for two-band vegetation indices (TBVIs) and Partial Least Squares Regression (PLSR) to predict Calcium (Ca), Iron (Fe), Potassium (K), Magnesium (Mg), Nitrogen (N), Phosphorus (P), Sulphur (S) and Zinc (Zn). Models' performances were assessed using the coefficient of determination (R2) and Root Mean Square Error (RMSE). For PRISMA images, the best prediction results were obtained for P in soybean (R2 = 0.69), K in soybean (R2 = 0.66), Mg in soybean (R2 = 0.58), Fe in soybean (R2 = 0.57), K in wheat (R2 = 0.57), K in corn (R2 = 0.55), P in wheat (R2 = 0.51), S in rice (R2 = 0.58) using TBVIs. In contrast to PRISMA, PLSR outperformed TBVIs when Sentinel-2 images were used as input. For Sentinel-2, the best predictions were obtained for P in soybean (R2 = 0.73), K in wheat (R2 = 0.67), Mg in soybean (R2 = 0.62), Zn in wheat (R2 = 0.56), Fe in soybean (R2 = 0.52), P in wheat (R2 = 0.52). Our study showed that estimating the nutrient composition of crops using remote sensing images has the potential to change how we approach a cost-effective, timely, and spatially explicit representation of the crops' nutritional quality." @default.
- W4366384357 created "2023-04-21" @default.
- W4366384357 creator A5032185790 @default.
- W4366384357 creator A5056154030 @default.
- W4366384357 creator A5069445894 @default.
- W4366384357 creator A5079630319 @default.
- W4366384357 creator A5082935691 @default.
- W4366384357 creator A5083063955 @default.
- W4366384357 date "2023-07-01" @default.
- W4366384357 modified "2023-10-05" @default.
- W4366384357 title "PRISMA and Sentinel-2 spectral response to the nutrient composition of grains" @default.
- W4366384357 cites W1487726742 @default.
- W4366384357 cites W1488794426 @default.
- W4366384357 cites W1590793547 @default.
- W4366384357 cites W182858355 @default.
- W4366384357 cites W1970028096 @default.
- W4366384357 cites W1995470113 @default.
- W4366384357 cites W1999829995 @default.
- W4366384357 cites W2004598447 @default.
- W4366384357 cites W2006920087 @default.
- W4366384357 cites W2025875803 @default.
- W4366384357 cites W2028678328 @default.
- W4366384357 cites W2042254390 @default.
- W4366384357 cites W2046404820 @default.
- W4366384357 cites W2048303077 @default.
- W4366384357 cites W2048976066 @default.
- W4366384357 cites W2068227628 @default.
- W4366384357 cites W2070544064 @default.
- W4366384357 cites W2071031840 @default.
- W4366384357 cites W2076532457 @default.
- W4366384357 cites W2078112771 @default.
- W4366384357 cites W2080836258 @default.
- W4366384357 cites W2113410727 @default.
- W4366384357 cites W2114535331 @default.
- W4366384357 cites W2127049470 @default.
- W4366384357 cites W2135120009 @default.
- W4366384357 cites W2136332263 @default.
- W4366384357 cites W2139925058 @default.
- W4366384357 cites W2155201573 @default.
- W4366384357 cites W2162731200 @default.
- W4366384357 cites W2202464059 @default.
- W4366384357 cites W2539185528 @default.
- W4366384357 cites W2549423164 @default.
- W4366384357 cites W2611517298 @default.
- W4366384357 cites W2727118680 @default.
- W4366384357 cites W2767953525 @default.
- W4366384357 cites W2781915194 @default.
- W4366384357 cites W2784594061 @default.
- W4366384357 cites W2789152424 @default.
- W4366384357 cites W2801083736 @default.
- W4366384357 cites W2804845600 @default.
- W4366384357 cites W2808369121 @default.
- W4366384357 cites W2810130046 @default.
- W4366384357 cites W2884506556 @default.
- W4366384357 cites W2886654852 @default.
- W4366384357 cites W2889161293 @default.
- W4366384357 cites W2892179381 @default.
- W4366384357 cites W2919174461 @default.
- W4366384357 cites W2940521977 @default.
- W4366384357 cites W2983376237 @default.
- W4366384357 cites W2986738893 @default.
- W4366384357 cites W2996571809 @default.
- W4366384357 cites W3010955769 @default.
- W4366384357 cites W3030269884 @default.
- W4366384357 cites W3032866824 @default.
- W4366384357 cites W3097157253 @default.
- W4366384357 cites W3111218739 @default.
- W4366384357 cites W3115616338 @default.
- W4366384357 cites W3132847750 @default.
- W4366384357 cites W3138894128 @default.
- W4366384357 cites W3158095175 @default.
- W4366384357 cites W3160699921 @default.
- W4366384357 cites W3164997792 @default.
- W4366384357 cites W3189992775 @default.
- W4366384357 cites W4205508379 @default.
- W4366384357 cites W4220683592 @default.
- W4366384357 cites W4296780577 @default.
- W4366384357 cites W802717832 @default.
- W4366384357 doi "https://doi.org/10.1016/j.rse.2023.113567" @default.
- W4366384357 hasPublicationYear "2023" @default.
- W4366384357 type Work @default.
- W4366384357 citedByCount "2" @default.
- W4366384357 countsByYear W43663843572023 @default.
- W4366384357 crossrefType "journal-article" @default.
- W4366384357 hasAuthorship W4366384357A5032185790 @default.
- W4366384357 hasAuthorship W4366384357A5056154030 @default.
- W4366384357 hasAuthorship W4366384357A5069445894 @default.
- W4366384357 hasAuthorship W4366384357A5079630319 @default.
- W4366384357 hasAuthorship W4366384357A5082935691 @default.
- W4366384357 hasAuthorship W4366384357A5083063955 @default.
- W4366384357 hasBestOaLocation W43663843571 @default.
- W4366384357 hasConcept C105795698 @default.
- W4366384357 hasConcept C128990827 @default.
- W4366384357 hasConcept C137580998 @default.
- W4366384357 hasConcept C140793950 @default.
- W4366384357 hasConcept C142724271 @default.
- W4366384357 hasConcept C142796444 @default.
- W4366384357 hasConcept C14522933 @default.