Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366386851> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4366386851 abstract "Forest structure analysis and biomass prediction systems are key tools for advancing forest trait-based ecology and ecosystem stewardship. The combination of near-field remote sensing techniques---e.g. Unmanned Aerial Vehicles (UAV) and Light Detection and Ranging (LiDAR) systems---with machine learning (ML) methods enhances the accuracy of tree trait prediction and above ground-biomass~(AGB) estimates. In this study, we utilized a UAV-LiDAR system to map the 3D architecture of a Norway spruce forest in Davos, Switzerland, where a field-based inventory served as ground truth data. The objectives of this study were (i) to gain insights into variation and gradients of tree height and (ii) to evaluate whether this knowledge of community structure may prove useful as contextual information to improve predictions of AGB at the individual tree level. To investigate the local association of structural traits, we segmented the point cloud data scene into individual trees and treated tree height as the morphological variable of interest. We then used local indicators of spatial association to determine the extent of significant local context, and defined tree neighborhoods within the forest. Then, we extracted metrics from the tree neighborhoods and introduced them in a ML regression pipeline to evaluate predictions of individual tree diameter. We set up a regression experiment where the focus is on comparing performance of predictions of tree diameter between the exact same models, either considering neighborhood metrics (i.e. context-aware models), or not. Next, AGB is estimated from tree height derived from UAV-LiDAR, predicted tree diameter and allometry. The benefits of context awareness are assessed in terms of accuracy gained in predicting AGB. For the task of DBH regression, we obtained results of different machine learning methods (i.e. AdaBoost, Lasso and Random Forest) and evaluated these based on nested cross-validation. We applied this approach to two separate tree data sets within the same site, one being clustered and continuous, the other discontinuous and scattered in separate sampling plots. In both cases, we found evidence of enhanced AGB prediction performance in context-aware regressions---RMSE was reduced by 4.0% and by 9.1%, respectively. These findings indicate that gradients in morphological tree traits across the ecosystem proxy for unveiled ecological information that influence tree growth, which can be leveraged to enhance predictions of AGB." @default.
- W4366386851 created "2023-04-21" @default.
- W4366386851 creator A5014350016 @default.
- W4366386851 creator A5017031707 @default.
- W4366386851 creator A5023532714 @default.
- W4366386851 creator A5040103463 @default.
- W4366386851 creator A5066510854 @default.
- W4366386851 creator A5070045377 @default.
- W4366386851 creator A5074779213 @default.
- W4366386851 creator A5077323678 @default.
- W4366386851 date "2023-08-19" @default.
- W4366386851 modified "2023-10-16" @default.
- W4366386851 title "Contextual learning improves forest above-ground biomass estimates from UAV-LiDAR: use of tree trait associations." @default.
- W4366386851 doi "https://doi.org/10.31223/x5qs98" @default.
- W4366386851 hasPublicationYear "2023" @default.
- W4366386851 type Work @default.
- W4366386851 citedByCount "0" @default.
- W4366386851 crossrefType "posted-content" @default.
- W4366386851 hasAuthorship W4366386851A5014350016 @default.
- W4366386851 hasAuthorship W4366386851A5017031707 @default.
- W4366386851 hasAuthorship W4366386851A5023532714 @default.
- W4366386851 hasAuthorship W4366386851A5040103463 @default.
- W4366386851 hasAuthorship W4366386851A5066510854 @default.
- W4366386851 hasAuthorship W4366386851A5070045377 @default.
- W4366386851 hasAuthorship W4366386851A5074779213 @default.
- W4366386851 hasAuthorship W4366386851A5077323678 @default.
- W4366386851 hasBestOaLocation W43663868511 @default.
- W4366386851 hasConcept C113174947 @default.
- W4366386851 hasConcept C119857082 @default.
- W4366386851 hasConcept C131979681 @default.
- W4366386851 hasConcept C134306372 @default.
- W4366386851 hasConcept C146849305 @default.
- W4366386851 hasConcept C147103442 @default.
- W4366386851 hasConcept C154945302 @default.
- W4366386851 hasConcept C166957645 @default.
- W4366386851 hasConcept C202444582 @default.
- W4366386851 hasConcept C205649164 @default.
- W4366386851 hasConcept C2779343474 @default.
- W4366386851 hasConcept C28631016 @default.
- W4366386851 hasConcept C33923547 @default.
- W4366386851 hasConcept C39432304 @default.
- W4366386851 hasConcept C41008148 @default.
- W4366386851 hasConcept C51399673 @default.
- W4366386851 hasConcept C54286561 @default.
- W4366386851 hasConcept C62649853 @default.
- W4366386851 hasConcept C9652623 @default.
- W4366386851 hasConceptScore W4366386851C113174947 @default.
- W4366386851 hasConceptScore W4366386851C119857082 @default.
- W4366386851 hasConceptScore W4366386851C131979681 @default.
- W4366386851 hasConceptScore W4366386851C134306372 @default.
- W4366386851 hasConceptScore W4366386851C146849305 @default.
- W4366386851 hasConceptScore W4366386851C147103442 @default.
- W4366386851 hasConceptScore W4366386851C154945302 @default.
- W4366386851 hasConceptScore W4366386851C166957645 @default.
- W4366386851 hasConceptScore W4366386851C202444582 @default.
- W4366386851 hasConceptScore W4366386851C205649164 @default.
- W4366386851 hasConceptScore W4366386851C2779343474 @default.
- W4366386851 hasConceptScore W4366386851C28631016 @default.
- W4366386851 hasConceptScore W4366386851C33923547 @default.
- W4366386851 hasConceptScore W4366386851C39432304 @default.
- W4366386851 hasConceptScore W4366386851C41008148 @default.
- W4366386851 hasConceptScore W4366386851C51399673 @default.
- W4366386851 hasConceptScore W4366386851C54286561 @default.
- W4366386851 hasConceptScore W4366386851C62649853 @default.
- W4366386851 hasConceptScore W4366386851C9652623 @default.
- W4366386851 hasLocation W43663868511 @default.
- W4366386851 hasOpenAccess W4366386851 @default.
- W4366386851 hasPrimaryLocation W43663868511 @default.
- W4366386851 hasRelatedWork W2194160504 @default.
- W4366386851 hasRelatedWork W2335177719 @default.
- W4366386851 hasRelatedWork W2543661874 @default.
- W4366386851 hasRelatedWork W2899084033 @default.
- W4366386851 hasRelatedWork W2903224593 @default.
- W4366386851 hasRelatedWork W3080305507 @default.
- W4366386851 hasRelatedWork W3165704192 @default.
- W4366386851 hasRelatedWork W4315874604 @default.
- W4366386851 hasRelatedWork W4366775409 @default.
- W4366386851 hasRelatedWork W4385977169 @default.
- W4366386851 isParatext "false" @default.
- W4366386851 isRetracted "false" @default.
- W4366386851 workType "article" @default.