Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366387560> ?p ?o ?g. }
- W4366387560 endingPage "4871" @default.
- W4366387560 startingPage "4861" @default.
- W4366387560 abstract "Energy consumption classification is one of the most widely-used approaches in the energy area that is applied in various applications such as household, commercial, urban, rural, industrial, etc. Energy consumption due to its substantial positive influence on the quality of made decisions, production and distribution management, and cost reduction, has considerable literature. In the classification literature, numerous statistical, intelligence, and hybrid methods have been developed and proposed in order to yield more accurate results. The common point of all these models is that whole of techniques follow a prevalent and repetitive procedure of learning process based on continuous distance-based cost function. While the objective function of classification is discrete. While the mismatch of the continuous cost function in classification problems with the discrete objective function causes them to be illogical or inefficient. Therefore, in this paper, a novel discrete learning process is offered to eliminate the inconsistency between the cost function and the classification objective function. The main difference between the proposed learning methodology rather than conventional versions is its cost function. In the proposed learning methodology, a mismatching function is considered as a cost function, which is dissimilar to previously developed ones, which are continuous functions based on distance, is a discrete function based on direction. In this way, in the proposed learning process, unknown parameters are discretely adjusted and at once jumped to the target. This is in contrast to conventional continuous learning algorithms in which the unknown parameters are continuously adjusted and step-by-step near the target. In this paper, deep multilayer neural networks (DMNs) have been exemplarily applied to implement the proposed learning algorithm. Although more consistency of goal and cost functions will logically has not a negative effect on the classification rate of classifiers. However, in this paper, to show the superiority of the proposed discrete deep multilayer neural network (DDMN) over conventional continuous-based classifiers, four energy consumption benchmark data sets have been employed. These data sets include the Tamilnadu Electricity Board Hourly Readings, Tetouan City Energy Consumption, Household Electric Power consumption, and steel industry Energy Consumption. Empirical results indicate that the proposed DDMN model, as pre-expected, can yield better performance in all cases than the DMN model. The DDMN model can achieve a 93.27% classification rate on average and upgrade its classic version approximately by 4.77%." @default.
- W4366387560 created "2023-04-21" @default.
- W4366387560 creator A5005829949 @default.
- W4366387560 creator A5013224503 @default.
- W4366387560 creator A5074298629 @default.
- W4366387560 date "2023-12-01" @default.
- W4366387560 modified "2023-10-14" @default.
- W4366387560 title "A novel discrete deep learning-based intelligent methodology for energy consumption classification" @default.
- W4366387560 cites W1976611654 @default.
- W4366387560 cites W1989583795 @default.
- W4366387560 cites W1991001067 @default.
- W4366387560 cites W2041383636 @default.
- W4366387560 cites W2049028244 @default.
- W4366387560 cites W2049202288 @default.
- W4366387560 cites W2062463467 @default.
- W4366387560 cites W2070365379 @default.
- W4366387560 cites W2080365290 @default.
- W4366387560 cites W2111218742 @default.
- W4366387560 cites W2123513648 @default.
- W4366387560 cites W2169050535 @default.
- W4366387560 cites W2339603402 @default.
- W4366387560 cites W2748625139 @default.
- W4366387560 cites W2752803996 @default.
- W4366387560 cites W2760298007 @default.
- W4366387560 cites W2793964145 @default.
- W4366387560 cites W2885171608 @default.
- W4366387560 cites W2909960216 @default.
- W4366387560 cites W2913712311 @default.
- W4366387560 cites W2917950237 @default.
- W4366387560 cites W2945599056 @default.
- W4366387560 cites W2947023249 @default.
- W4366387560 cites W2970705010 @default.
- W4366387560 cites W2979799490 @default.
- W4366387560 cites W3008626953 @default.
- W4366387560 cites W3016453002 @default.
- W4366387560 cites W3096255692 @default.
- W4366387560 cites W3097468641 @default.
- W4366387560 cites W3133514897 @default.
- W4366387560 cites W3136239516 @default.
- W4366387560 cites W3136263106 @default.
- W4366387560 cites W3167685056 @default.
- W4366387560 cites W3175547917 @default.
- W4366387560 cites W3175763617 @default.
- W4366387560 cites W3185320029 @default.
- W4366387560 cites W3199010018 @default.
- W4366387560 cites W3211535971 @default.
- W4366387560 cites W4200273593 @default.
- W4366387560 cites W4206699374 @default.
- W4366387560 cites W4210827692 @default.
- W4366387560 cites W4213302937 @default.
- W4366387560 cites W4226066133 @default.
- W4366387560 cites W4229892816 @default.
- W4366387560 cites W4313562775 @default.
- W4366387560 cites W4315750704 @default.
- W4366387560 cites W895272228 @default.
- W4366387560 doi "https://doi.org/10.1016/j.egyr.2023.04.006" @default.
- W4366387560 hasPublicationYear "2023" @default.
- W4366387560 type Work @default.
- W4366387560 citedByCount "0" @default.
- W4366387560 crossrefType "journal-article" @default.
- W4366387560 hasAuthorship W4366387560A5005829949 @default.
- W4366387560 hasAuthorship W4366387560A5013224503 @default.
- W4366387560 hasAuthorship W4366387560A5074298629 @default.
- W4366387560 hasConcept C105795698 @default.
- W4366387560 hasConcept C111472728 @default.
- W4366387560 hasConcept C111919701 @default.
- W4366387560 hasConcept C119599485 @default.
- W4366387560 hasConcept C119857082 @default.
- W4366387560 hasConcept C124101348 @default.
- W4366387560 hasConcept C126255220 @default.
- W4366387560 hasConcept C127413603 @default.
- W4366387560 hasConcept C138885662 @default.
- W4366387560 hasConcept C139719470 @default.
- W4366387560 hasConcept C14036430 @default.
- W4366387560 hasConcept C154945302 @default.
- W4366387560 hasConcept C162324750 @default.
- W4366387560 hasConcept C186370098 @default.
- W4366387560 hasConcept C2778348673 @default.
- W4366387560 hasConcept C2779530757 @default.
- W4366387560 hasConcept C2780165032 @default.
- W4366387560 hasConcept C33923547 @default.
- W4366387560 hasConcept C41008148 @default.
- W4366387560 hasConcept C78458016 @default.
- W4366387560 hasConcept C86803240 @default.
- W4366387560 hasConcept C98045186 @default.
- W4366387560 hasConceptScore W4366387560C105795698 @default.
- W4366387560 hasConceptScore W4366387560C111472728 @default.
- W4366387560 hasConceptScore W4366387560C111919701 @default.
- W4366387560 hasConceptScore W4366387560C119599485 @default.
- W4366387560 hasConceptScore W4366387560C119857082 @default.
- W4366387560 hasConceptScore W4366387560C124101348 @default.
- W4366387560 hasConceptScore W4366387560C126255220 @default.
- W4366387560 hasConceptScore W4366387560C127413603 @default.
- W4366387560 hasConceptScore W4366387560C138885662 @default.
- W4366387560 hasConceptScore W4366387560C139719470 @default.
- W4366387560 hasConceptScore W4366387560C14036430 @default.
- W4366387560 hasConceptScore W4366387560C154945302 @default.
- W4366387560 hasConceptScore W4366387560C162324750 @default.