Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366392421> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4366392421 abstract "<sec> <title>BACKGROUND</title> Recent advancements in computer vision and deep learning techniques, deep neural networks have helped achieve expert-level performance in clinical diagnoses. </sec> <sec> <title>OBJECTIVE</title> This diagnostic study aimed to determine the usefulness of a proposed artificial intelligence (AI)-based computer-aided diagnosis (AI-CAD) system in assisting ophthalmologists with the diagnosis of retinal diseases using optical coherence tomography (OCT) images. </sec> <sec> <title>METHODS</title> For the training and evaluation of the proposed deep learning model, 1,693 OCT images were collected and annotated. The dataset included 929 and 764 cases of acute and chronic central serous chorioretinopathy, respectively. Sixty-six ophthalmologists (two groups: 36 retina and 30 non-retina specialists) participated in the observer performance test. To evaluate the deep learning algorithm used in the proposed AI-CAD system, the training, validation, and test sets were split in an 8:1:1 ratio. One hundred randomly sampled OCT images from the test set were used for the observer performance test, and the participants were instructed to select a central serous chorioretinopathy subtype for each of these images. Each image was provided under different conditions: (i) without AI support (No AI), (ii) with an AI probability score (AI prob), and (iii) with an AI probability score and visual evidence (AI Prob+Evid). The sensitivity, specificity, and area under the receiver operating characteristic curve were used to measure the diagnostic performance of the model and ophthalmologists. </sec> <sec> <title>RESULTS</title> The proposed system achieved a high detection performance (99.0% of the area under the curve), outperforming the 66 ophthalmologists who participated in the observer performance test. In both groups, ophthalmologists with the support of AI Prob+Evid achieved the highest mean diagnostic performance compared with that of those subjected to other conditions (No AI or AI Prob). Non-retina specialists achieved expert-level diagnostic performance with the support of the proposed AI-CAD system. </sec> <sec> <title>CONCLUSIONS</title> Our proposed AI-CAD system improved the diagnosis of retinal disease by ophthalmologists, which may support decision-making regarding retinal disease detection and alleviate the workload of ophthalmologists. </sec>" @default.
- W4366392421 created "2023-04-21" @default.
- W4366392421 creator A5012872041 @default.
- W4366392421 creator A5013859234 @default.
- W4366392421 creator A5015607194 @default.
- W4366392421 creator A5035490395 @default.
- W4366392421 creator A5049682044 @default.
- W4366392421 creator A5073242785 @default.
- W4366392421 creator A5086828959 @default.
- W4366392421 creator A5090076104 @default.
- W4366392421 date "2023-04-14" @default.
- W4366392421 modified "2023-09-26" @default.
- W4366392421 title "Developing and evaluating an artificial intelligence-based computer-aided diagnosis system for retinal disease: A diagnostic study (Preprint)" @default.
- W4366392421 cites W1968779687 @default.
- W4366392421 cites W1972142460 @default.
- W4366392421 cites W2015191250 @default.
- W4366392421 cites W2071342347 @default.
- W4366392421 cites W2093216792 @default.
- W4366392421 cites W2194775991 @default.
- W4366392421 cites W2563389038 @default.
- W4366392421 cites W2575893464 @default.
- W4366392421 cites W2581082771 @default.
- W4366392421 cites W2894319790 @default.
- W4366392421 cites W2939466230 @default.
- W4366392421 cites W2958114009 @default.
- W4366392421 cites W2962858109 @default.
- W4366392421 cites W2990272570 @default.
- W4366392421 cites W3097832380 @default.
- W4366392421 cites W3156761880 @default.
- W4366392421 cites W3157766833 @default.
- W4366392421 cites W417772227 @default.
- W4366392421 cites W4206671978 @default.
- W4366392421 cites W4241727697 @default.
- W4366392421 cites W4252684946 @default.
- W4366392421 cites W4362223627 @default.
- W4366392421 doi "https://doi.org/10.2196/preprints.48142" @default.
- W4366392421 hasPublicationYear "2023" @default.
- W4366392421 type Work @default.
- W4366392421 citedByCount "0" @default.
- W4366392421 crossrefType "posted-content" @default.
- W4366392421 hasAuthorship W4366392421A5012872041 @default.
- W4366392421 hasAuthorship W4366392421A5013859234 @default.
- W4366392421 hasAuthorship W4366392421A5015607194 @default.
- W4366392421 hasAuthorship W4366392421A5035490395 @default.
- W4366392421 hasAuthorship W4366392421A5049682044 @default.
- W4366392421 hasAuthorship W4366392421A5073242785 @default.
- W4366392421 hasAuthorship W4366392421A5086828959 @default.
- W4366392421 hasAuthorship W4366392421A5090076104 @default.
- W4366392421 hasConcept C108583219 @default.
- W4366392421 hasConcept C118487528 @default.
- W4366392421 hasConcept C119857082 @default.
- W4366392421 hasConcept C136764020 @default.
- W4366392421 hasConcept C142724271 @default.
- W4366392421 hasConcept C154945302 @default.
- W4366392421 hasConcept C169903167 @default.
- W4366392421 hasConcept C2778818243 @default.
- W4366392421 hasConcept C2779549770 @default.
- W4366392421 hasConcept C41008148 @default.
- W4366392421 hasConcept C43169469 @default.
- W4366392421 hasConcept C534262118 @default.
- W4366392421 hasConcept C58471807 @default.
- W4366392421 hasConcept C71924100 @default.
- W4366392421 hasConceptScore W4366392421C108583219 @default.
- W4366392421 hasConceptScore W4366392421C118487528 @default.
- W4366392421 hasConceptScore W4366392421C119857082 @default.
- W4366392421 hasConceptScore W4366392421C136764020 @default.
- W4366392421 hasConceptScore W4366392421C142724271 @default.
- W4366392421 hasConceptScore W4366392421C154945302 @default.
- W4366392421 hasConceptScore W4366392421C169903167 @default.
- W4366392421 hasConceptScore W4366392421C2778818243 @default.
- W4366392421 hasConceptScore W4366392421C2779549770 @default.
- W4366392421 hasConceptScore W4366392421C41008148 @default.
- W4366392421 hasConceptScore W4366392421C43169469 @default.
- W4366392421 hasConceptScore W4366392421C534262118 @default.
- W4366392421 hasConceptScore W4366392421C58471807 @default.
- W4366392421 hasConceptScore W4366392421C71924100 @default.
- W4366392421 hasLocation W43663924211 @default.
- W4366392421 hasOpenAccess W4366392421 @default.
- W4366392421 hasPrimaryLocation W43663924211 @default.
- W4366392421 hasRelatedWork W2337926734 @default.
- W4366392421 hasRelatedWork W2803981856 @default.
- W4366392421 hasRelatedWork W3099765033 @default.
- W4366392421 hasRelatedWork W3163306278 @default.
- W4366392421 hasRelatedWork W4205763134 @default.
- W4366392421 hasRelatedWork W4223943233 @default.
- W4366392421 hasRelatedWork W4308993413 @default.
- W4366392421 hasRelatedWork W4309637067 @default.
- W4366392421 hasRelatedWork W4310213292 @default.
- W4366392421 hasRelatedWork W4312200629 @default.
- W4366392421 isParatext "false" @default.
- W4366392421 isRetracted "false" @default.
- W4366392421 workType "article" @default.