Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366415368> ?p ?o ?g. }
- W4366415368 endingPage "5080" @default.
- W4366415368 startingPage "5080" @default.
- W4366415368 abstract "Non-alcoholic fatty liver disease (NAFLD) is the most prevalent cause of chronic liver disease, affecting approximately 2 billion individuals worldwide with a spectrum that can range from simple steatosis to cirrhosis. Typically, the diagnosis of NAFLD is based on imaging studies, but the gold standard remains liver biopsies. Hence, the use of artificial intelligence (AI) in this field, which has recently undergone rapid development in various aspects of medicine, has the potential to accurately diagnose NAFLD and steatohepatitis (NASH). This paper provides an overview of the latest research that employs AI for the diagnosis and staging of NAFLD, as well as applications for future developments in this field." @default.
- W4366415368 created "2023-04-21" @default.
- W4366415368 creator A5012416087 @default.
- W4366415368 creator A5027946862 @default.
- W4366415368 creator A5035898359 @default.
- W4366415368 creator A5045274453 @default.
- W4366415368 creator A5059796493 @default.
- W4366415368 creator A5069650424 @default.
- W4366415368 date "2023-04-19" @default.
- W4366415368 modified "2023-10-18" @default.
- W4366415368 title "Artificial Intelligence (AI)-Enhanced Ultrasound Techniques Used in Non-Alcoholic Fatty Liver Disease: Are They Ready for Prime Time?" @default.
- W4366415368 cites W1258381707 @default.
- W4366415368 cites W1622799587 @default.
- W4366415368 cites W1964475077 @default.
- W4366415368 cites W1965790951 @default.
- W4366415368 cites W1977947533 @default.
- W4366415368 cites W1985440520 @default.
- W4366415368 cites W1993684467 @default.
- W4366415368 cites W2000402516 @default.
- W4366415368 cites W2017695035 @default.
- W4366415368 cites W2027981468 @default.
- W4366415368 cites W2036604908 @default.
- W4366415368 cites W2054923425 @default.
- W4366415368 cites W2076540113 @default.
- W4366415368 cites W2105329556 @default.
- W4366415368 cites W2117072703 @default.
- W4366415368 cites W2126041319 @default.
- W4366415368 cites W2131180613 @default.
- W4366415368 cites W2140241435 @default.
- W4366415368 cites W2156473966 @default.
- W4366415368 cites W2179591645 @default.
- W4366415368 cites W2180927083 @default.
- W4366415368 cites W2187982244 @default.
- W4366415368 cites W2210672989 @default.
- W4366415368 cites W2564268079 @default.
- W4366415368 cites W2580009538 @default.
- W4366415368 cites W2605410469 @default.
- W4366415368 cites W2607108876 @default.
- W4366415368 cites W2639924080 @default.
- W4366415368 cites W2737416694 @default.
- W4366415368 cites W2770129291 @default.
- W4366415368 cites W2801458876 @default.
- W4366415368 cites W2884405614 @default.
- W4366415368 cites W2885478230 @default.
- W4366415368 cites W2888585002 @default.
- W4366415368 cites W2889598741 @default.
- W4366415368 cites W2898423983 @default.
- W4366415368 cites W2898826032 @default.
- W4366415368 cites W2944215246 @default.
- W4366415368 cites W2953320409 @default.
- W4366415368 cites W2972256375 @default.
- W4366415368 cites W2973051022 @default.
- W4366415368 cites W2987914270 @default.
- W4366415368 cites W2993206503 @default.
- W4366415368 cites W2996779950 @default.
- W4366415368 cites W3002179283 @default.
- W4366415368 cites W3004404769 @default.
- W4366415368 cites W3015063330 @default.
- W4366415368 cites W3030027788 @default.
- W4366415368 cites W3031818154 @default.
- W4366415368 cites W3036251238 @default.
- W4366415368 cites W3045236009 @default.
- W4366415368 cites W3048500491 @default.
- W4366415368 cites W3081456483 @default.
- W4366415368 cites W3083958231 @default.
- W4366415368 cites W3088090115 @default.
- W4366415368 cites W3119555742 @default.
- W4366415368 cites W3161047005 @default.
- W4366415368 cites W3161701468 @default.
- W4366415368 cites W3164121810 @default.
- W4366415368 cites W3166729680 @default.
- W4366415368 cites W3172781323 @default.
- W4366415368 cites W3184356413 @default.
- W4366415368 cites W3191894747 @default.
- W4366415368 cites W3194891455 @default.
- W4366415368 cites W3206229628 @default.
- W4366415368 cites W3211504429 @default.
- W4366415368 cites W4205432249 @default.
- W4366415368 cites W4205809212 @default.
- W4366415368 cites W4225893078 @default.
- W4366415368 cites W4231535905 @default.
- W4366415368 cites W4280492869 @default.
- W4366415368 cites W4283804489 @default.
- W4366415368 cites W4292560094 @default.
- W4366415368 cites W4293090496 @default.
- W4366415368 cites W4304617403 @default.
- W4366415368 cites W4306179858 @default.
- W4366415368 cites W4310673938 @default.
- W4366415368 cites W4311056064 @default.
- W4366415368 cites W4311284475 @default.
- W4366415368 cites W4321372271 @default.
- W4366415368 doi "https://doi.org/10.3390/app13085080" @default.
- W4366415368 hasPublicationYear "2023" @default.
- W4366415368 type Work @default.
- W4366415368 citedByCount "0" @default.
- W4366415368 crossrefType "journal-article" @default.
- W4366415368 hasAuthorship W4366415368A5012416087 @default.
- W4366415368 hasAuthorship W4366415368A5027946862 @default.