Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366419987> ?p ?o ?g. }
- W4366419987 endingPage "1249" @default.
- W4366419987 startingPage "1249" @default.
- W4366419987 abstract "The maturity of tobacco leaves directly affects their curing quality. However, no effective method has been developed for determining their maturity during production. Assessment of tobacco maturity for flue curing has long depended on production experience, leading to considerable variation. In this study, hyperspectral imaging combined with a novel algorithm was used to develop a classification model that could accurately determine the maturity of tobacco leaves. First, tobacco leaves of different maturity levels (unripe, under-ripe, ripe, and over-ripe) were collected. ENVI software was used to remove the hyperspectral imaging (HSI) background, and 11 groups of filtered images were obtained using Python 3.7. Finally, a full-band-based partial least-squares discriminant analysis (PLS-DA) classification model was established to identify the maturity of the tobacco leaves. In the calibration set, the model accuracy of the original spectrum was 88.57%, and the accuracy of the de-trending, multiple scattering correction (MSC), and standard normalization variable (SNV) treatments was 91.89%, 95.27%, and 92.57%, respectively. In the prediction set, the model accuracy of the de-trending, MSC, and SNV treatments was 93.85%, 96.92%, and 93.85%, respectively. The experimental results indicate that a higher model accuracy was obtained with the filtered images than with the original spectrum. Because of the higher accuracy, de-trending, MSC, and SNV treatments were selected as the candidate characteristic spectral bands, and a successive projection algorithm (SPA), competitive adaptive reweighted sampling (CASR), and particle swarm optimization (PSO) were used as the screening methods. Finally, a genetic algorithm (GA), PLS-DA, line support vector machine (LSVM), and back-propagation neural network (BPNN) classification and discrimination models were established. The combination SNV-SPA-PLS-DA model provided the best accuracy in the calibration and prediction sets (99.32% and 98.46%, respectively). Our findings highlight the efficacy of using visible/near-infrared (ViS/NIR) hyperspectral imaging for detecting the maturity of tobacco leaves, providing a theoretical basis for improving tobacco production." @default.
- W4366419987 created "2023-04-21" @default.
- W4366419987 creator A5001246167 @default.
- W4366419987 creator A5014142094 @default.
- W4366419987 creator A5024871348 @default.
- W4366419987 creator A5026736738 @default.
- W4366419987 creator A5055661915 @default.
- W4366419987 creator A5075294965 @default.
- W4366419987 creator A5085142676 @default.
- W4366419987 date "2023-04-18" @default.
- W4366419987 modified "2023-09-30" @default.
- W4366419987 title "The Application of Hyperspectral Images in the Classification of Fresh Leaves’ Maturity for Flue-Curing Tobacco" @default.
- W4366419987 cites W1964810204 @default.
- W4366419987 cites W1976097357 @default.
- W4366419987 cites W1997131347 @default.
- W4366419987 cites W2002314914 @default.
- W4366419987 cites W2007104720 @default.
- W4366419987 cites W2034709171 @default.
- W4366419987 cites W2035295704 @default.
- W4366419987 cites W2043365243 @default.
- W4366419987 cites W2052653174 @default.
- W4366419987 cites W2053512934 @default.
- W4366419987 cites W2160581817 @default.
- W4366419987 cites W2606244344 @default.
- W4366419987 cites W2737708736 @default.
- W4366419987 cites W2795134552 @default.
- W4366419987 cites W2804181407 @default.
- W4366419987 cites W2903361964 @default.
- W4366419987 cites W2907450372 @default.
- W4366419987 cites W2942117263 @default.
- W4366419987 cites W2971788466 @default.
- W4366419987 cites W2985509840 @default.
- W4366419987 cites W2999940704 @default.
- W4366419987 cites W3046584425 @default.
- W4366419987 cites W3094633680 @default.
- W4366419987 cites W3095578130 @default.
- W4366419987 cites W3123866732 @default.
- W4366419987 cites W3129109516 @default.
- W4366419987 cites W3129764777 @default.
- W4366419987 cites W3134781677 @default.
- W4366419987 cites W3150095517 @default.
- W4366419987 cites W3166294652 @default.
- W4366419987 cites W3175484621 @default.
- W4366419987 cites W4220657324 @default.
- W4366419987 cites W4223928751 @default.
- W4366419987 cites W4229061329 @default.
- W4366419987 cites W4295778221 @default.
- W4366419987 cites W4311262326 @default.
- W4366419987 cites W4311271677 @default.
- W4366419987 cites W4323566537 @default.
- W4366419987 cites W4361030088 @default.
- W4366419987 doi "https://doi.org/10.3390/pr11041249" @default.
- W4366419987 hasPublicationYear "2023" @default.
- W4366419987 type Work @default.
- W4366419987 citedByCount "1" @default.
- W4366419987 countsByYear W43664199872023 @default.
- W4366419987 crossrefType "journal-article" @default.
- W4366419987 hasAuthorship W4366419987A5001246167 @default.
- W4366419987 hasAuthorship W4366419987A5014142094 @default.
- W4366419987 hasAuthorship W4366419987A5024871348 @default.
- W4366419987 hasAuthorship W4366419987A5026736738 @default.
- W4366419987 hasAuthorship W4366419987A5055661915 @default.
- W4366419987 hasAuthorship W4366419987A5075294965 @default.
- W4366419987 hasAuthorship W4366419987A5085142676 @default.
- W4366419987 hasBestOaLocation W43664199871 @default.
- W4366419987 hasConcept C122519844 @default.
- W4366419987 hasConcept C144027150 @default.
- W4366419987 hasConcept C153180895 @default.
- W4366419987 hasConcept C154945302 @default.
- W4366419987 hasConcept C159078339 @default.
- W4366419987 hasConcept C33923547 @default.
- W4366419987 hasConcept C41008148 @default.
- W4366419987 hasConcept C86803240 @default.
- W4366419987 hasConceptScore W4366419987C122519844 @default.
- W4366419987 hasConceptScore W4366419987C144027150 @default.
- W4366419987 hasConceptScore W4366419987C153180895 @default.
- W4366419987 hasConceptScore W4366419987C154945302 @default.
- W4366419987 hasConceptScore W4366419987C159078339 @default.
- W4366419987 hasConceptScore W4366419987C33923547 @default.
- W4366419987 hasConceptScore W4366419987C41008148 @default.
- W4366419987 hasConceptScore W4366419987C86803240 @default.
- W4366419987 hasFunder F4320323845 @default.
- W4366419987 hasFunder F4320325625 @default.
- W4366419987 hasIssue "4" @default.
- W4366419987 hasLocation W43664199871 @default.
- W4366419987 hasLocation W43664199872 @default.
- W4366419987 hasOpenAccess W4366419987 @default.
- W4366419987 hasPrimaryLocation W43664199871 @default.
- W4366419987 hasRelatedWork W2028628118 @default.
- W4366419987 hasRelatedWork W2030270830 @default.
- W4366419987 hasRelatedWork W2097889461 @default.
- W4366419987 hasRelatedWork W2921350538 @default.
- W4366419987 hasRelatedWork W3146035662 @default.
- W4366419987 hasRelatedWork W3173596272 @default.
- W4366419987 hasRelatedWork W3211183747 @default.
- W4366419987 hasRelatedWork W4307772628 @default.
- W4366419987 hasRelatedWork W4312789307 @default.
- W4366419987 hasRelatedWork W4361285595 @default.