Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366420618> ?p ?o ?g. }
- W4366420618 endingPage "457" @default.
- W4366420618 startingPage "441" @default.
- W4366420618 abstract "Artificial intelligence (AI) is the branch of science that deals with the development of machines to mimic human intelligence. Machine learning (ML) is a subdomain of AI where the machine can learn automatically from data without being explicitly programmed. Agriculture is constantly pressed upon to produce more with less resource. AI and ML techniques have the capacity to optimize resource utilization by analysing agricultural data. It has changed the present-day face of farming by predicting various input parameters and forecasting post-harvest life of a crop. This chapter discusses the different AI and ML techniques available and how they have been used in different phases of the agriculture life cycle. This chapter includes vast range areas in agriculture that requires AI and ML. It includes soil, irrigation, and disease managements. Importance of AI in the field of plant phenomics also included in this chapter. The probable use of geographic information system (GIS) and remote sensing coupled with AI are discussed in this chapter." @default.
- W4366420618 created "2023-04-21" @default.
- W4366420618 creator A5031184394 @default.
- W4366420618 creator A5032171832 @default.
- W4366420618 creator A5033799923 @default.
- W4366420618 creator A5051102441 @default.
- W4366420618 creator A5066781456 @default.
- W4366420618 date "2023-01-01" @default.
- W4366420618 modified "2023-09-30" @default.
- W4366420618 title "Application of Artificial Intelligence and Machine Learning in Agriculture" @default.
- W4366420618 cites W1999047234 @default.
- W4366420618 cites W2002484239 @default.
- W4366420618 cites W2030808931 @default.
- W4366420618 cites W2061609131 @default.
- W4366420618 cites W2074476131 @default.
- W4366420618 cites W2107460837 @default.
- W4366420618 cites W2273322351 @default.
- W4366420618 cites W2331437357 @default.
- W4366420618 cites W2341865734 @default.
- W4366420618 cites W2467572358 @default.
- W4366420618 cites W2473156356 @default.
- W4366420618 cites W2589996472 @default.
- W4366420618 cites W2612844455 @default.
- W4366420618 cites W2626109361 @default.
- W4366420618 cites W2753403518 @default.
- W4366420618 cites W2758216428 @default.
- W4366420618 cites W2789255992 @default.
- W4366420618 cites W2790675133 @default.
- W4366420618 cites W2791276982 @default.
- W4366420618 cites W2795016359 @default.
- W4366420618 cites W2799842361 @default.
- W4366420618 cites W2800804123 @default.
- W4366420618 cites W2803478834 @default.
- W4366420618 cites W2890650850 @default.
- W4366420618 cites W2891090518 @default.
- W4366420618 cites W2895865077 @default.
- W4366420618 cites W2898543370 @default.
- W4366420618 cites W2901871634 @default.
- W4366420618 cites W2902625477 @default.
- W4366420618 cites W2911433502 @default.
- W4366420618 cites W2919115771 @default.
- W4366420618 cites W2921029329 @default.
- W4366420618 cites W2945372729 @default.
- W4366420618 cites W2945927599 @default.
- W4366420618 cites W2966848845 @default.
- W4366420618 cites W2994665917 @default.
- W4366420618 cites W2994751959 @default.
- W4366420618 cites W3003067960 @default.
- W4366420618 cites W3005079959 @default.
- W4366420618 cites W3006912664 @default.
- W4366420618 cites W3010225408 @default.
- W4366420618 cites W3012947883 @default.
- W4366420618 cites W3013438928 @default.
- W4366420618 cites W3035016091 @default.
- W4366420618 cites W3037080525 @default.
- W4366420618 cites W3037912933 @default.
- W4366420618 cites W3088051149 @default.
- W4366420618 cites W3126223769 @default.
- W4366420618 cites W3128322927 @default.
- W4366420618 cites W3158208127 @default.
- W4366420618 cites W3162672535 @default.
- W4366420618 cites W3172350297 @default.
- W4366420618 cites W3182844334 @default.
- W4366420618 cites W3203366103 @default.
- W4366420618 cites W3203589764 @default.
- W4366420618 cites W973570091 @default.
- W4366420618 doi "https://doi.org/10.1007/978-981-19-7498-4_21" @default.
- W4366420618 hasPublicationYear "2023" @default.
- W4366420618 type Work @default.
- W4366420618 citedByCount "0" @default.
- W4366420618 crossrefType "book-chapter" @default.
- W4366420618 hasAuthorship W4366420618A5031184394 @default.
- W4366420618 hasAuthorship W4366420618A5032171832 @default.
- W4366420618 hasAuthorship W4366420618A5033799923 @default.
- W4366420618 hasAuthorship W4366420618A5051102441 @default.
- W4366420618 hasAuthorship W4366420618A5066781456 @default.
- W4366420618 hasConcept C104317684 @default.
- W4366420618 hasConcept C118518473 @default.
- W4366420618 hasConcept C119857082 @default.
- W4366420618 hasConcept C120217122 @default.
- W4366420618 hasConcept C141231307 @default.
- W4366420618 hasConcept C154945302 @default.
- W4366420618 hasConcept C166957645 @default.
- W4366420618 hasConcept C185592680 @default.
- W4366420618 hasConcept C189206191 @default.
- W4366420618 hasConcept C202444582 @default.
- W4366420618 hasConcept C205649164 @default.
- W4366420618 hasConcept C206345919 @default.
- W4366420618 hasConcept C31258907 @default.
- W4366420618 hasConcept C33923547 @default.
- W4366420618 hasConcept C41008148 @default.
- W4366420618 hasConcept C55493867 @default.
- W4366420618 hasConcept C9652623 @default.
- W4366420618 hasConcept C98108635 @default.
- W4366420618 hasConceptScore W4366420618C104317684 @default.
- W4366420618 hasConceptScore W4366420618C118518473 @default.
- W4366420618 hasConceptScore W4366420618C119857082 @default.
- W4366420618 hasConceptScore W4366420618C120217122 @default.