Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366422209> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4366422209 endingPage "1070" @default.
- W4366422209 startingPage "1070" @default.
- W4366422209 abstract "Autonomous vehicles have gained popularity in recent years, but they are still not compatible with other vulnerable components of the traffic system, including pedestrians, bicyclists, motorcyclists, and occupants of smaller vehicles such as passenger cars. This incompatibility leads to reduced system performance and undermines traffic safety and comfort. To address this issue, the authors considered pedestrian crosswalks where vehicles, pedestrians, and micro-mobility vehicles collide at right angles in an urban road network. These road sections are areas where vulnerable people encounter vehicles perpendicularly. In order to prevent accidents in these areas, it is planned to introduce a warning system for vehicles and pedestrians. This procedure consists of multi-stage activities by sending warnings to drivers, disabled individuals, and pedestrians with phone addiction simultaneously. This collective autonomy is expected to reduce the number of accidents drastically. The aim of this paper is the automatic detection of a pedestrian crosswalk in an urban road network, designed from both pedestrian and vehicle perspectives. Faster R-CNN (R101-FPN and X101-FPN) and YOLOv7 network models were used in the analytical process of a dataset collected by the authors. Based on the detection performance comparison between both models, YOLOv7 accuracy was 98.6%, while the accuracy for Faster R-CNN was 98.29%. For the detection of different types of pedestrian crossings, YOLOv7 gave better prediction results than Faster R-CNN, although quite similar results were obtained." @default.
- W4366422209 created "2023-04-21" @default.
- W4366422209 creator A5023649222 @default.
- W4366422209 creator A5065881931 @default.
- W4366422209 creator A5084732645 @default.
- W4366422209 date "2023-04-18" @default.
- W4366422209 modified "2023-10-17" @default.
- W4366422209 title "Automatic Detection of Pedestrian Crosswalk with Faster R-CNN and YOLOv7" @default.
- W4366422209 cites W1536680647 @default.
- W4366422209 cites W2279236905 @default.
- W4366422209 cites W2565639579 @default.
- W4366422209 cites W2765867977 @default.
- W4366422209 cites W2778625752 @default.
- W4366422209 cites W2950076580 @default.
- W4366422209 cites W2986587807 @default.
- W4366422209 cites W3024046433 @default.
- W4366422209 cites W3033423353 @default.
- W4366422209 cites W3090722948 @default.
- W4366422209 cites W3099452838 @default.
- W4366422209 cites W3131866082 @default.
- W4366422209 cites W3137588588 @default.
- W4366422209 cites W3159196909 @default.
- W4366422209 cites W3176188210 @default.
- W4366422209 cites W3180901291 @default.
- W4366422209 cites W3195742741 @default.
- W4366422209 cites W3200966602 @default.
- W4366422209 cites W3204052635 @default.
- W4366422209 cites W4212774693 @default.
- W4366422209 cites W4304128598 @default.
- W4366422209 cites W4308527059 @default.
- W4366422209 cites W4309891817 @default.
- W4366422209 cites W4310187935 @default.
- W4366422209 cites W4312127970 @default.
- W4366422209 cites W4312844929 @default.
- W4366422209 cites W4313398501 @default.
- W4366422209 cites W4315750567 @default.
- W4366422209 cites W4317495538 @default.
- W4366422209 cites W4317513060 @default.
- W4366422209 cites W4319598957 @default.
- W4366422209 cites W4319601638 @default.
- W4366422209 cites W4320494277 @default.
- W4366422209 cites W639708223 @default.
- W4366422209 doi "https://doi.org/10.3390/buildings13041070" @default.
- W4366422209 hasPublicationYear "2023" @default.
- W4366422209 type Work @default.
- W4366422209 citedByCount "5" @default.
- W4366422209 countsByYear W43664222092023 @default.
- W4366422209 crossrefType "journal-article" @default.
- W4366422209 hasAuthorship W4366422209A5023649222 @default.
- W4366422209 hasAuthorship W4366422209A5065881931 @default.
- W4366422209 hasAuthorship W4366422209A5084732645 @default.
- W4366422209 hasBestOaLocation W43664222091 @default.
- W4366422209 hasConcept C121193887 @default.
- W4366422209 hasConcept C127413603 @default.
- W4366422209 hasConcept C22212356 @default.
- W4366422209 hasConcept C2777113093 @default.
- W4366422209 hasConcept C2780156472 @default.
- W4366422209 hasConcept C41008148 @default.
- W4366422209 hasConceptScore W4366422209C121193887 @default.
- W4366422209 hasConceptScore W4366422209C127413603 @default.
- W4366422209 hasConceptScore W4366422209C22212356 @default.
- W4366422209 hasConceptScore W4366422209C2777113093 @default.
- W4366422209 hasConceptScore W4366422209C2780156472 @default.
- W4366422209 hasConceptScore W4366422209C41008148 @default.
- W4366422209 hasIssue "4" @default.
- W4366422209 hasLocation W43664222091 @default.
- W4366422209 hasOpenAccess W4366422209 @default.
- W4366422209 hasPrimaryLocation W43664222091 @default.
- W4366422209 hasRelatedWork W1998372340 @default.
- W4366422209 hasRelatedWork W2085600283 @default.
- W4366422209 hasRelatedWork W2086584126 @default.
- W4366422209 hasRelatedWork W2137198929 @default.
- W4366422209 hasRelatedWork W2577170229 @default.
- W4366422209 hasRelatedWork W2756286556 @default.
- W4366422209 hasRelatedWork W3023670283 @default.
- W4366422209 hasRelatedWork W3182370717 @default.
- W4366422209 hasRelatedWork W566791342 @default.
- W4366422209 hasRelatedWork W602587028 @default.
- W4366422209 hasVolume "13" @default.
- W4366422209 isParatext "false" @default.
- W4366422209 isRetracted "false" @default.
- W4366422209 workType "article" @default.